Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПрадмоваСкарачэнніКніга ў PDF/DjVu

АЛБЕ́НА

(Албена),

прыморскі кліматычны курорт у Балгарыі. За 30 км ад г. Варна, на беразе Чорнага м., непадалёку (14 км) ад курорта Залатыя Пяскі. Развіваецца з канца 1960-х г. Мяккі марскі клімат, малавоблачнае надвор’е, брызы, цёплае мора з працяглай паласой (5 км, шыр. да 500 м) пясчанага пляжа — спрыяльныя ўмовы для аздараўленчага адпачынку, клімата- і таласатэрапіі. Шмат гасцініц, кемпінгаў, культ. і старт. комплексы, прывязаныя да навакольнага ландшафту. Цэнтр адпачынку і міжнар. турызму, месца правядзення фестываляў.

т. 1, с. 233

АЛБУКЕ́РКІ

(Albuquergue) Афонсу дэ (1453—16.2.1515),

партугальскі мараплавец, намеснік (віцэ-кароль) партуг. уладанняў у Індыі [1510—15], заснавальнік партуг. калан. імперыі ў Ост-Індыі. У 1503 на чале партуг. флатыліі накіраваны ў інд. г. Кочын, дзе пабудаваў форт. У 1507 захапіў г. Армуз у Персідскім заліве. У 1510 захапіў Гоа (стаў асн. апорным пунктам партуг. заваёўнікаў на Усходзе), у 1511 — Малаку. Албукеркі ўзначальваў першыя партуг. экспедыцыі на Малабарскі бераг, в. Цэйлон, у краіны Паўд.-Усх. Азіі.

т. 1, с. 233

АЛГАРЫ́ТМ

(Algorithmi — лац. транслітарацыя імя матэматыка аль-Харэзмі),

адно з асноўных паняццяў кібернетыкі; прадпісанне выканання сістэмы аперацый ці дзеянняў у зададзеным парадку для дасягнення выніку, які вызначаецца зыходнымі дадзенымі. Дазваляе праводзіць аперацыі з лікамі, літарамі, дужкамі і інш. сімваламі, атрымліваць рашэнні задач «у агульным выглядзе» (прыдатныя для цэлага класа аднатыпных задач). Напр., правілы арыфм. дзеянняў з рацыянальнымі лікамі, алгарытм знаходжання найб. агульнага дзельніка двух цэлых лікаў (А.Эўкліда), алгарытм перакладу з адной мовы на другую. Уласцівасці алгарытму вывучае алгарытмаў тэорыя.

У сярэдневяковай Еўропе алгарытмам наз. дзесятковую пазіцыйную сістэму злічэння і майстэрства лічэння ў ёй (лац. пераклад трактата аль-Харэзмі; 12 ст.). Развіццё электронна-выліч. тэхнікі дало магчымасць ствараць і рэалізоўваць складаныя алгарытмы ў матэматыцы і яе дастасаваннях.

В.А.Ліпніцкі.

т. 1, с. 233

АЛГАРЫ́ТМАЎ ТЭО́РЫЯ,

раздзел матэматыкі, які вывучае агульныя ўласцівасці алгарытмаў; тэарэт. аснова кібернетыкі, вылічальнай матэматыкі.

У інтуітыўным паняцці алгарытмы выкарыстоўваліся ў матэматыцы на працягу яе існавання. Дакладнае паняцце алгарытму сфарміравалася ў пач. 20 ст. і ўпершыню з’явілася ў працах матэматыкаў франц. Э.Барэля (1912) і ням. Г.Вейля (1921). Сістэматычная распрацоўка алгарытмаў тэорыі пачалася ў 1936, калі амер. матэматык А.Чэрч удакладніў паняцце алгарытмічна вылічальнай функцыі і прывёў прыклад невыліч. функцыі, англ. А.Цьюрынг і амер. Э.Пост удакладнілі паняцце алгарытму ў тэрмінах ідэалізаваных выліч. машын (машыны Цьюрынга—Поста); сав. матэматык А.М.Калмагораў прапанаваў выкарыстанне алгарытмаў тэорыі для абгрунтавання інфармацыі тэорыі (1965).

Адзін з гал. Кірункаў алгарытмаў тэорыі — вывучэнне невырашальнасці (вырашальнасці) алгарытмічных праблем, напр., у самой алгарытмаў тэорыі — праблема спынення універсальнай машыны Цьюрынга; у матэм. логіцы — праблема распазнавання тоесна праўдзівых формул злічэння прэдыкатаў 1-й ступені; у алгебры — праблема тоеснасці для паўгруп; у тапалогіі — праблема гомеамарфізму; у тэорыі лікаў — 10-я праблема Д.Гільберта. Даследаванні прывялі да ўзнікнення паняцця ступені невырашальнасці, вывучэння адпаведных матэм. структур і паказалі, што алгарытмічныя праблемы невырашальнасці маюць найб. ступень.

Літ.:

Мальцев А.И. Алгоритмы и рекурсивные функции. 2 изд. М., 1986;

Ершов Ю.Л. Проблемы разрешимости и конструктивные модели. М., 1980.

Р.Т.Вальвачоў.

т. 1, с. 233

АЛГАРЫТМІЗА́ЦЫЯ ПРАЦЭ́САЎ,

апісанне працэсаў на мове матэм. сімвалаў з мэтай атрымання алгарытму (звычайна для рэалізацыі на ЭВМ). Кожны працэс разбіваюць на элементарныя акты (падпрацэсы), якія можна матэм. апісаць на аснове схем алгебры логікі, аўтаматаў тэорыі, выпадковых працэсаў, масавага абслугоўвання тэорыі і інш. Алгарытмізацыя працэсаў дае магчымасць праводзіць колькасныя і якасныя даследаванні працэсаў функцыянавання вял. сістэм, звязаныя з ацэнкай іх асн. уласцівасцяў (надзейнасці, эфектыўнасці і інш.).

Складаецца з папярэдняга аналізу задачы алгарытмізацыі і аб’екта даследавання; структурнага апісання даследвальнага працэсу; тэарэт. аналізу ўраўненняў сувязі паміж яго параметрамі; эксперым. вызначэння статычных і дынамічных параметраў; матэм. мадэлявання працэсу і выяўлення адпаведнасці мадэлі рэальнай сітуацыі; аналізу мадэлі і распрацоўкі рэкамендацый па яе ўдасканаленні; складання аптымальнага алгарытму на аснове распрацаваных рэкамендацый; праверкі і ўдакладнення алгарытму кіравання працэсам у вытв. мовах. Пры апрацоўцы вял. масіваў інфармацыі звычайна выкарыстоўваюць сродкі выліч. тэхнікі.

т. 1, с. 233

АЛГАРЫТМІ́ЧНАЯ МО́ВА,

гл. ў арт. Мова праграмавання.

т. 1, с. 233

А́ЛГЕБРА,

навука пра сістэмы аб’ектаў той ці інш. прыроды, у якіх устаноўлены аперацыі, па сваіх уласцівасцях падобныя на складанне і множанне лікаў (алг. аперацыі). Задачы і метады алгебры ствараліся паступова, у выніку пошукаў агульных прыёмаў рашэння аднатыпных арыфм. задач (пераважна састаўлення і рашэння ўраўненняў).

Вялікі ўплыў на развіццё алг. ідэй і сімволікі зрабіла «Арыфметыка» Дыяфанта (3 ст.). Тэрмін «алгебра» паходзіць ад назвы твора Мухамеда аль-Харэзмі «Альджэбр аль-мукабала» (9 ст.), які мае агульныя метады рашэння алгебраічных ураўненняў (АУ) 1-й і 2-й ступеняў. У канцы 15 ст. замест грувасткіх слоўных апісанняў алг. дзеянняў у матэм. творах з’яўляюцца знакі «+» і «-», потым знакі ступеняў, кораняў, дужкі. У канцы 16 ст. Ф.Віет першы выкарыстаў літарныя абазначэнні. Да сярэдзіны 17 ст. ў асн. склалася сучасная алг. сімволіка. У далейшым погляд на алгебру мяняўся. Алгебра 17—18 ст. займалася літарнымі вылічэннямі (рашэнне АУ, тоеснае пераўтварэнне формул і інш.) у адрозненне ад арыфметыкі, якая аперыруе канкрэтнымі лікамі. Да сярэдзіны 18 ст. алгебра склалася прыблізна ў аб’ёме цяперашняй т.зв. элементарнай алгебры. Алгебра 18—19 ст. з’яўляецца ў асн. алгебрай мнагачленаў. Першай гіст. задачай алгебры было рашэнне АУ з адным невядомым. У 16 ст. італьян. матэматыкамі была знойдзена формула для рашэння ўраўненняў 3-й ступені (формула Кардана), потым метад рашэння ўраўненняў 4-й ступені (метад Ферары). Амаль 3 стагоддзі вёўся пошук формулы для рашэння ўраўненняў вышэйшай ступені. У 17 ст. ўпершыню выказана А.Жырарам, а ў канцы 18 ст. К.Гаўсам даказана асн. тэарэма алгебры аб існаванні камплекснага кораня для адвольных АУ з камплекснымі каэфіцыентамі. У 1824 Н.Абель даказаў, што ўраўненне вышэй 4-й ступені ў агульным выпадку ў радыкалах невырашальнае, а ў 1830 Э.Галуа знайшоў крытэрый вырашальнасці ў радыкалах АУ. Разам з тэарэмай АУ з адным невядомым разглядаліся сістэмы АУ з многімі невядомымі, у прыватнасці сістэмы лінейных ураўненняў, у сувязі з чым узніклі паняцці матрыцы і дэтэрмінанта. З сярэдзіны 19 ст. даследаванні ў алгебры паступова пераносяцца з тэорыі АУ да вывучэння адвольных алг. аперацый. Абстрактнае паняцце алг. аперацыі ўзнікла ў сярэдзіне 19 ст. ў сувязі з даследаваннем прыроды камплексных лікаў, а таксама ў выніку з’яўлення прыкладаў алг. аперацый над элементамі зусім інш. прыроды, чым лікі, — складанне і множанне матрыц і інш.

У пачатку 20 ст. алгебра стала разглядацца як агульная тэорыя алг. аперацый на аснове аксіяматычнага метаду (сфарміравалася пад уплывам прац Ц.Гільберта, Э.Штэйніца, Э.Арціна, Э.Нётэр і інш.). Сучасная алгебра вывучае мноствы адвольнай прыроды з зададзенымі на іх алг. аперацыямі (г.зн. алгебра ці універсальныя алгебра). Доўгі час вывучаліся толькі некалькі тыпаў універсальных алгебраў — групы, кольцы, лінейныя прасторы. Пазней пачалося вывучэнне абагульненняў паняцця групы — паўгрупы, квазігрупы і лупы. Разам з асацыятыўнымі кольцамі і алгебрай пачалі вывучацца і неасацыятыўныя кольцы і алгебра. Асацыятыўна-камутатыўныя кольцы і палі з’яўляюцца асн. аб’ектам вывучэння камутатыўнай алгебры, з якой цесна звязана алгебраічная геаметрыя. Важным тыпам алгебры з’яўляюцца структуры. Лінейныя прасторы, модулі, а таксама іх лінейныя пераўтварэнні і сумежныя пытанні вывучае лінейная алгебра, часткай якой з’яўляюцца тэорыі лінейных ураўненняў і матрыц. Да лінейнай алгебры прымыкае полілінейная алгебра. Першыя працы па агульнай тэорыі адвольных універсальных алгебраў належаць Г.Біркгафу (1830-я г.). У тыя ж гады А.І.Мальцаў і А.Тарскі заклалі асновы тэорыі мадэляў — мностваў з зададзенымі на іх адносінамі. У выніку цеснага збліжэння тэорыі універсальных алгебраў з тэорыяй мадэляў узнік новы раздзел алгебры, сумежны з алгебрай і матэматычнай логікай, — тэорыя алг. сістэм, якая вывучае мноствы з зададзенымі на іх алг. аперацыямі і адносінамі (гл. Алгебра логікі). Дысцыпліны, сумежныя з алгебрай і інш. часткамі матэматыкі, вызначаюцца ўнясеннем ва універсальныя алгебры дадатковых структур, узгодненых з алг. аперацыямі і адносінамі: тапалагічная алгебра, у т. л. тапалагічныя групы і групы Лі, тэорыя ўнармаваных кольцаў, дыферэнцыяльная алгебра, тэорыі розных упарадкаваных алгебраў. Да сярэдзіны 1950-х г. сфарміравалася гамалагічная алгебра, карані якой ляжаць у алгебры і тапалогіі.

Алг. паняцці і метады выкарыстоўваюцца ў геаметрыі, тэорыі лікаў, функцыян. аналізе, тэорыі дыферэнцыяльных ураўненняў, метадах вылічэнняў і інш. Алгебра мае вял. дачыненне да фізікі (выяўленні груп у квантавай фізіцы), крышталяграфіі (дыскрэтныя групы), кібернетыкі (тэорыі аўтаматаў і кадзіравання), матэм. эканомікі (лінейныя няроўнасці) і інш. Сістэм. даследаванні па алгебры на Беларусі пачалі Дз.А.Супруненка (1945) і С.А.Чуніхін (1953). Вядуцца пераважна ў Ін-це матэматыкі АН Беларусі, БДУ, Гомельскім ун-це ў школах У.П.Платонава, А.Я.Залескага, Л.А.Шамяткова.

Літ.:

Математика, её содержание, методы и значение. Т. 1—3. М., 1956;

Бурбаки Н. Очерки по истории математики: Пер. с фр. М., 1963.

Р.Т.Вальвачоў.

т. 1, с. 233

АЛГЕБРАІ́ЧНАЕ ЎРАЎНЕ́ННЕ,

ураўненне выгляду P(x, y,...,z)=0, дзе P(x, y,...,z) — мнагасклад n-ай ступені (n≥0) ад адной або некалькіх пераменных. Калі пераменная адна, то лік а, які ператварае алгебраічнае ўраўненне ў тоеснасць, наз. коранем ураўнення і мнагасклад дзеліцца на (x-a) без рэшты (тэарэма Безу). У алгебраічна замкнёным полі (гл. Алгебраічны лік) кожны мнагасклад P(x) ступені n мае роўна n каранёў (у т. л. кратных). Н.Абель паказаў (1824), што пры n≥5 карані некаторых ураўненняў P(x)=0 нельга запісаць праз радыкалы.

В.І.Бернік.

т. 1, с. 234

АЛГЕБРАІ́ЧНАЯ ГЕАМЕ́ТРЫЯ,

раздзел матэматыкі, які вывучае геаметрычныя аб’екты, звязаныя алг. ўраўненнямі, — алг. мнагастайнасці. Узнікла ў 17 ст. з увядзеннем у геаметрыю паняцця каардынат. У сярэдзіне 19 ст. алгебраічная геаметрыя выдзелілася з матэм. аналізу як тэорыя алг. крывых. У канцы 19 ст. італьян. вучоныя К.Сегрэ, Л.Крэмона і інш. стварылі тэорыю алг. паверхняў. У 1930-я г. матэматыкі галандскі Б.Л.Ван-дэр-Вардэн, ням. Г.Гасе і франц. А.Вейль стварылі асновы алгебраічнай геаметрыі над адвольным полем К. Падабенства тэорыі алг. крывых і тэорыі алг. лікаў стымулявала пошукі агульнай алг. асновы (амер. вучоны О.Зарыскі, франц. матэматыкі К.Шэвале і Ж.Сер). Асновай стала тэорыя схем (франц. матэматык А.Гратэндзік), дзе, напр., на геам. мове разглядаліся сістэмы алг. ураўненняў над адвольным камутатыўным кольцам, апісваліся ўласцівасці праектыўных мнагастайнасцяў. Алгебраічная геаметрыя звязана з тэорыяй функцый камплексных пераменных, лікаў тэорыяй, ураўненнямі матэматычнай фізікі і інш.

Літ.:

Шафаревич И.Р. Основы алгебраической геометрии. 2 изд. Т. 1—2. М., 1988;

Гриффитс Ф., Харрис Дж. Принципы алгебраической геометрии: Пер. с англ. Т. 1—2. М., 1982.

В.А.Ліпніцкі.

т. 1, с. 234

АЛГЕБРАІ́ЧНАЯ ТАПАЛО́ГІЯ,

галіна тапалогіі, якая вывучае ўласцівасці аб’ектаў і іх узаемных адлюстраванняў, што не мяняюцца пры неперарыўных дэфармацыях (гаматопіях). З кожнай тапалагічнай прасторай звязваецца паслядоўнасць алг. аб’ектаў Hn(x) (груп гамалогій); кожнаму неперарыўнаму адлюстраванню f:X → Y тапалагічных прастораў адпавядае набор гамамарфізмаў fn:Hn(X) → Hn(Y). Пры гэтым тапалагічная задача пераўтвараецца ў адпаведную алг. задачу. Калі сродкі алгебры дазваляюць рашыць такую задачу, то адваротным шляхам атрымліваюцца пэўныя меркаванні аб зыходнай тапалагічнай праблеме. У алгебраічнай тапалогіі звычайна разглядаюцца складаныя алг. аб’екты, напр., комплексы (мнагаграннікі, паліэдры), мнагастайнасці (замкнёныя, адкрытыя, гладкія, аналітычныя і інш.).

В.А.Ліпніцкі.

т. 1, с. 234