А́ЛГЕБРА,
навука пра сістэмы аб’ектаў той ці інш. прыроды, у якіх устаноўлены аперацыі, па сваіх уласцівасцях падобныя на складанне і множанне лікаў (алг. аперацыі). Задачы і метады алгебры ствараліся паступова, у выніку пошукаў агульных прыёмаў рашэння аднатыпных арыфм. задач (пераважна састаўлення і рашэння ўраўненняў).
Вялікі ўплыў на развіццё алг. ідэй і сімволікі зрабіла «Арыфметыка» Дыяфанта (3 ст.). Тэрмін «алгебра» паходзіць ад назвы твора Мухамеда аль-Харэзмі «Альджэбр аль-мукабала» (9 ст.), які мае агульныя метады рашэння алгебраічных ураўненняў (АУ) 1-й і 2-й ступеняў. У канцы 15 ст. замест грувасткіх слоўных апісанняў алг. дзеянняў у матэм. творах з’яўляюцца знакі «+» і «-», потым знакі ступеняў, кораняў, дужкі. У канцы 16 ст. Ф.Віет першы выкарыстаў літарныя абазначэнні. Да сярэдзіны 17 ст. ў асн. склалася сучасная алг. сімволіка. У далейшым погляд на алгебру мяняўся. Алгебра 17—18 ст. займалася літарнымі вылічэннямі (рашэнне АУ, тоеснае пераўтварэнне формул і інш.) у адрозненне ад арыфметыкі, якая аперыруе канкрэтнымі лікамі. Да сярэдзіны 18 ст. алгебра склалася прыблізна ў аб’ёме цяперашняй т.зв. элементарнай алгебры. Алгебра 18—19 ст. з’яўляецца ў асн. алгебрай мнагачленаў. Першай гіст. задачай алгебры было рашэнне АУ з адным невядомым. У 16 ст. італьян. матэматыкамі была знойдзена формула для рашэння ўраўненняў 3-й ступені (формула Кардана), потым метад рашэння ўраўненняў 4-й ступені (метад Ферары). Амаль 3 стагоддзі вёўся пошук формулы для рашэння ўраўненняў вышэйшай ступені. У 17 ст. ўпершыню выказана А.Жырарам, а ў канцы 18 ст. К.Гаўсам даказана асн. тэарэма алгебры аб існаванні камплекснага кораня для адвольных АУ з камплекснымі каэфіцыентамі. У 1824 Н.Абель даказаў, што ўраўненне вышэй 4-й ступені ў агульным выпадку ў радыкалах невырашальнае, а ў 1830 Э.Галуа знайшоў крытэрый вырашальнасці ў радыкалах АУ. Разам з тэарэмай АУ з адным невядомым разглядаліся сістэмы АУ з многімі невядомымі, у прыватнасці сістэмы лінейных ураўненняў, у сувязі з чым узніклі паняцці матрыцы і дэтэрмінанта. З сярэдзіны 19 ст. даследаванні ў алгебры паступова пераносяцца з тэорыі АУ да вывучэння адвольных алг. аперацый. Абстрактнае паняцце алг. аперацыі ўзнікла ў сярэдзіне 19 ст. ў сувязі з даследаваннем прыроды камплексных лікаў, а таксама ў выніку з’яўлення прыкладаў алг. аперацый над элементамі зусім інш. прыроды, чым лікі, — складанне і множанне матрыц і інш.
У пачатку 20 ст. алгебра стала разглядацца як агульная тэорыя алг. аперацый на аснове аксіяматычнага метаду (сфарміравалася пад уплывам прац Ц.Гільберта, Э.Штэйніца, Э.Арціна, Э.Нётэр і інш.). Сучасная алгебра вывучае мноствы адвольнай прыроды з зададзенымі на іх алг. аперацыямі (г.зн. алгебра ці універсальныя алгебра). Доўгі час вывучаліся толькі некалькі тыпаў універсальных алгебраў — групы, кольцы, лінейныя прасторы. Пазней пачалося вывучэнне абагульненняў паняцця групы — паўгрупы, квазігрупы і лупы. Разам з асацыятыўнымі кольцамі і алгебрай пачалі вывучацца і неасацыятыўныя кольцы і алгебра. Асацыятыўна-камутатыўныя кольцы і палі з’яўляюцца асн. аб’ектам вывучэння камутатыўнай алгебры, з якой цесна звязана алгебраічная геаметрыя. Важным тыпам алгебры з’яўляюцца структуры. Лінейныя прасторы, модулі, а таксама іх лінейныя пераўтварэнні і сумежныя пытанні вывучае лінейная алгебра, часткай якой з’яўляюцца тэорыі лінейных ураўненняў і матрыц. Да лінейнай алгебры прымыкае полілінейная алгебра. Першыя працы па агульнай тэорыі адвольных універсальных алгебраў належаць Г.Біркгафу (1830-я г.). У тыя ж гады А.І.Мальцаў і А.Тарскі заклалі асновы тэорыі мадэляў — мностваў з зададзенымі на іх адносінамі. У выніку цеснага збліжэння тэорыі універсальных алгебраў з тэорыяй мадэляў узнік новы раздзел алгебры, сумежны з алгебрай і матэматычнай логікай, — тэорыя алг. сістэм, якая вывучае мноствы з зададзенымі на іх алг. аперацыямі і адносінамі (гл. Алгебра логікі). Дысцыпліны, сумежныя з алгебрай і інш. часткамі матэматыкі, вызначаюцца ўнясеннем ва універсальныя алгебры дадатковых структур, узгодненых з алг. аперацыямі і адносінамі: тапалагічная алгебра, у т. л. тапалагічныя групы і групы Лі, тэорыя ўнармаваных кольцаў, дыферэнцыяльная алгебра, тэорыі розных упарадкаваных алгебраў. Да сярэдзіны 1950-х г. сфарміравалася гамалагічная алгебра, карані якой ляжаць у алгебры і тапалогіі.
Алг. паняцці і метады выкарыстоўваюцца ў геаметрыі, тэорыі лікаў, функцыян. аналізе, тэорыі дыферэнцыяльных ураўненняў, метадах вылічэнняў і інш. Алгебра мае вял. дачыненне да фізікі (выяўленні груп у квантавай фізіцы), крышталяграфіі (дыскрэтныя групы), кібернетыкі (тэорыі аўтаматаў і кадзіравання), матэм. эканомікі (лінейныя няроўнасці) і інш. Сістэм. даследаванні па алгебры на Беларусі пачалі Дз.А.Супруненка (1945) і С.А.Чуніхін (1953). Вядуцца пераважна ў Ін-це матэматыкі АН Беларусі, БДУ, Гомельскім ун-це ў школах У.П.Платонава, А.Я.Залескага, Л.А.Шамяткова.
Літ.:
Математика, её содержание, методы и значение. Т. 1—3. М., 1956;
Бурбаки Н. Очерки по истории математики: Пер. с фр. М., 1963.
Р.Т.Вальвачоў.
т. 1, с. 233