Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПрадмоваСкарачэнніКніга ў PDF/DjVu

А́ТАМНАЯ ЭЛЕКТРАСТА́НЦЫЯ

(АЭС),

электрастанцыя, дзе атамная (ядзерная) энергія ператвараецца ў электрычную. Першая ў свеце АЭС магутнасцю 5 МВт пачала дзейнічаць у 1954 у б. СССР (г. Обнінск). На АЭС цеплата, якая вылучаецца ў ядз. рэактары ў выніку ланцуговай рэакцыі дзялення ядраў некаторых цяжкіх хім. элементаў (напр., уран-233, уран-235, плутоній-239 і інш.), ператвараецца ў электрычную, як і на цеплавых электрастанцыях. АЭС складаюць аснову ядзернай энергетыкі. У склад АЭС уваходзяць ядзерны рэактар, цеплаабменнікі, помпы і агрэгаты для ператварэння цеплавой энергіі ў электрычную, электратэхн. абсталяванне. На АЭС выкарыстоўваюць рэактары пераважна на цеплавых і хуткіх нейтронах. У залежнасці ад тыпу і агрэгатнага стану цепланосьбіта выбіраецца тэрмадынамічны цыкл АЭС. Вышэйшая т-ра цыкла вызначаецца найбольшай т-рай цеплавыдзяляльных элементаў і ўласцівасцямі цепланосьбітаў. Для выключэння перагрэву прадугледжана хуткае (на працягу некалькіх секунд) глушэнне ланцуговай ядз. рэакцыі аварыйнай сістэмай расхалоджвання.

Пры дзяленні 1 г ізатопаў урану або плутонію вызваляецца каля 22,5 МВт·гадз энергіі, што эквівалентна спальванню 2,8 т умоўнага паліва. Гэта з’яўляецца асн. аргументам эканамічнасці АЭС. Пасля аварыі на Чарнобыльскай АЭС (1986), пашырэння інфармацыі аб радыеактыўным забруджванні навакольнага асяроддзя і стане бяспекі на АЭС энергет. праграмы ў б. СССР пачалі згортваць. Аднак паглыбленне энергет. крызісу зноў ставіць пытанне пра будаўніцтва новых АЭС. Найбліжэйшыя да Беларусі дзеючыя АЭС (у дужках адлегласць у кіламетрах ад яе да дзярж. мяжы і да Мінска): Ігналінская ў Літве (5; 185), Смаленская ў Расіі (80; 355), Чарнобыльская (7; 310) і Ровенская на Украіне (60; 285).

А.М.Люцко.

т. 2, с. 67

А́ТАМНАЯ ЭНЕРГЕ́ТЫКА,

гл. Ядзерная энергетыка.

т. 2, с. 68

А́ТАМНАЯ ЭНЕ́РГІЯ,

гл. Ядзерная энергія.

т. 2, с. 68

А́ТАМНА-АБСАРБЦЫ́ЙНЫ АНА́ЛІЗ,

метад элементнага аналізу і даследавання ўласцівасцяў рэчываў па атамных спектрах паглынання. Заснаваны на прапусканні праз атамізаванае рэчыва бачнага або УФ-выпрамянення і рэгістрацыі спектраў. Выкарыстоўваецца для вызначэння каля 70 хім. элементаў у вадзе, глебе, прадуктах жыццядзейнасці арганізма, нафце, мінералах, сплавах і інш. аб’ектах, для вымярэння некаторых фіз. і фіз.-хім. велічыняў.

Літ.:

Брицке М.Э. Атомно-абсорбционный спектрохимический анализ. М., 1982.

т. 2, с. 67

А́ТАМНЫЯ БОЕПРЫПА́СЫ,

гл. Ядзерныя боепрыпасы.

т. 2, с. 68

А́ТАМНЫЯ СПЕ́КТРЫ,

спектры, якія ўзнікаюць пры выпрамяненні і паглынанні фатонаў свабоднымі ці слаба ўзаемадзейнымі атамамі (атамнымі газамі, парай невял. шчыльнасці). Лінейчастыя, складаюцца з асобных спектральных ліній, кожная з якіх адпавядае пераходу электрона паміж двума адпаведнымі ўзроўнямі энергіі атама.

Спектральныя лініі характарызуюцца пэўнымі значэннямі частаты ваганняў святла ν, хвалевага ліку ν/c і даўжыні хвалі λ=c/ν, дзе c — скорасць святла ў вакууме. Для найбольш простых атамных спектраў, якімі з’яўляюцца спектры атама вадароду і вадародападобных іонаў, месцазнаходжанне спектральных ліній вызначаецца па формуле: 1 λ = ν c = Eni Enk hc = RZ2 ( 1 n2k 1 n2i ) , дзе En — энергія ўзроўню, h — Планка пастаянная, R — Рыдберга пастаянная, Z — атамны нумар, n — галоўны квантавы лік. Спектральныя лініі аб’ядноўваюцца ў спектральныя серыі, адна з якіх (пры nk=2, ni=3, 4, 5) наз. серыяй Бальмера; адкрыццё яе ў 1885 дало пачатак выяўленню заканамернасцяў у атамных спектрах. Спектры атамаў шчолачных металаў, якія маюць адзін знешні электрон, падобны да спектра атама вадароду, але зрушаны ў бок меншых частот, колькасць спектральных серый павялічана, заканамернасці ў спектрах апісваюцца больш складанымі формуламі. Атамы, у якіх дабудоўваюцца dw- і f-абалонкі (гл. ў арт. Перыядычная сістэма элементаў Мендзялеева), маюць найб. складаныя спектры (многа соцень і тысяч ліній).

Тэорыя атамных спектраў заснавана на характарыстыцы электронаў у атаме квантавымі лікамі n і 1 і дазваляе вызначыць магчымыя ўзроўні энергіі. Вывучаны спектры вял. колькасці нейтральных і іанізаваных атамаў, расшчапленне спектральных ліній атамаў у магнітным (Зеемана з’ява) і ў электрычным (Штарка з’ява) палях. З дапамогай атамных спектраў вызначаецца састаў рэчыва (спектральны аналіз).

Літ.:

Ельяшевич М.А. Атомная и молекулярная спектроскоп я. М., 1962;

Фриш С.Э. Оптические спектры атомов М.; Л., 1963;

Собельман И.И. Введение в теорию атомных спектров. М., 1977.

М.А.Ельяшэвіч.

т. 2, с. 68

А́ТАМНЫЯ СУТЫКНЕ́ННІ,

гл. Сутыкненні атамныя.

т. 2, с. 69

А́ТАМНЫ ГАДЗІ́ННІК,

гл. Квантавы гадзіннік.

т. 2, с. 68

А́ТАМНЫ ЛЕДАКО́Л,

судна з ядзернай энергетычнай устаноўкай, прызначанае для плавання сярод ільдоў і падтрымкі навігацыі ў замярзальных басейнах.

Першы атамны ледакол «Ленін» пабудаваны ў СССР (1959), водазмяшчэнне 16 тыс. т, магутнасць 32,4 МВт, скорасць ходу па чыстай вадзе 33 км/гадз, у лёдзе таўшчынёй 2,5 м — 3,7 км/гадз. Ядзерная энергет. ўстаноўка з 3 вода-вадзянымі рэактарамі на уране. Водажалезная біял. ахова засцерагае ад радыеактыўнага выпрамянення. Кіраванне дыстанцыйнае. Атамны ледакол «Арктыка» (водазмяшчэнне 23 тыс. т, магутнасць 55 МВт) у 1977 дасягнуў Паўн. полюса. Аднатыпныя Атамныя ледаколы «Сібір» (1978) і «Расія» (1985).

т. 2, с. 68

А́ТАМНЫ НУ́МАР,

парадкавы нумар, нумар хімічнага элемента ў перыядычнай сістэме элементаў Мендзялеева. Роўны ліку пратонаў у атамным ядры. Вызначае фіз. і хім. ўласцівасці атама.

т. 2, с. 68