ГЕАМЕ́ТРЫЯ
(ад геа... + ...метрыя),
раздзел матэматыкі, які вывучае прасторавыя дачыненні і формы цел, а таксама інш. дачыненні і формы, падобныя да прасторавых паводле сваёй структуры. Узнікла з практычных патрэб чалавека для вызначэння адлегласці, вуглоў, плошчаў, аб’ёмаў і інш. Без геаметрыі немагчыма развіццё астраноміі, геадэзіі, картаграфіі, крышталяграфіі, адноснасці тэорыі і ўсіх графічных метадаў. Геам. тэорыі выкарыстоўваюцца ў механіцы і фізіцы: магчымыя канфігурацыі (узаемнае размяшчэнне элементаў) мех. сістэмы ўтвараюць «канфігурацыйную прастору» (рух сістэмы адлюстроўваецца рухам пункта ў гэтай прасторы); сукупнасць станаў фіз. сістэмы разглядаецца як «фазавая прастора» сістэмы і інш.
Асн. паняцці геаметрыі (лінія, паверхня, пункт, цела геаметрычнае) узніклі ў выніку абстрагавання ад інш. уласцівасцей цел (напр., масы, колеру). Параўнанне цел абумовіла ўзнікненне паняццяў даўжыні, плошчы, аб’ёму, меры вугла. Самыя простыя геам. звесткі і паняцці былі вядомы ў стараж. Егіпце, Вавілоне, Кітаі, Індыі; геам. палажэнні фармуляваліся ў выглядзе правіл з элементарнымі доказамі або без доказаў. Самастойнай навукай геаметрыя стала ў Стараж. Грэцыі (5 ст. да н.э.); геаметрыя ў аб’ёме, які прыкладна адпавядае сучаснаму курсу элементарнай геаметрыі, выкладзена ў «Пачатках» Эўкліда (3 ст. да н.э.). Развіццё астраноміі і геадэзіі прывяло да стварэння плоскай (гл. Трыганаметрыя) і сферычнай трыганаметрыі (1—2 ст. да н.э.). Інтэнсіўнае развіццё геаметрыі пачынаецца з 17 ст.: Р.Дэкарт прапанаваў метад каардынат; І.Ньютан і Г.Лейбніц стварылі дыферэнцыяльнае і інтэгральнае злічэнне, што дало магчымасць вывучаць геам. аб’екты метадамі алгебры і аналізу бясконца малых (гл. Алгебраічная геаметрыя, Аналітычная геаметрыя, Дыферэнцыяльная геаметрыя); Ж.Дэзарг і Б.Паскаль заклалі асновы праектыўнай геаметрыі. У працах Г.Монжа (18 ст.) сучасны выгляд набыла нарысоўная геаметрыя. У 1826 М.А.Лабачэўскі пабудаваў геаметрыю на аснове сістэмы аксіём, якія адрозніваюцца ад эўклідавай толькі аксіёмай аб паралельных прамых (гл. Лабачэўскага геаметрыя). Стала магчымым будаванне разнастайных прастораў з рознымі геаметрыямі (гл., напр., Неэўклідавы геаметрыі), сістэматызацыя якіх магчыма з дапамогай груп тэорыі. Пасля гэтага павялічылася роля і пашырылася выкарыстанне аксіяматычнага метаду. У 1872 Ф.Клейн сфармуляваў новае тлумачэнне геаметрыі як навукі аб уласцівасцях, інварыянтных адносна зададзенай групы пераўтварэнняў. Паралельна развіваўся логікавы аналіз асноў геаметрыі, высвятляліся пытанні несупярэчлівасці, мінімальнасці і паўнаты сістэмы аксіём. Вынікі гэтых работ падвёў Д.Гільберт у кн. «Асновы геаметрыі» (1899). У працах сав. матэматыкаў П.С.Аляксандрава, Л.С.Пантрагіна, П.С.Урысона развіваліся асн. кірункі тапалогіі. Кірунак «Геаметрыя ў цэлым» заснавалі сав. матэматыкі А.Д.Аляксандраў, М.У.Яфімаў, А.Б.Пагарэлаў.
На Беларусі станаўленне геаметрыі пачалося ў 1930-я г. Атрыманы важныя вынікі ў праблеме ўкладання рыманавых прастораў у эўтслідавы і рыманавы прасторы (Ц.Л.Бурстын); метадамі вонкавых форм даследаваны лініі і паверхні Картана ў неэўклідавых прасторах (Л.К.Тутаеў); адкрыты клас аднародных прастораў і распрацавана іх тэорыя (В.І.Вядзернікаў, А.С.Фядзенка, Б.П.Камракоў).
Літ.:
Александров А.Д., Нецветаев Н.Ю. Геометрия. М., 1990;
Алгебра и аналитическая геометрия. Ч. 1. Мн., 1984;
Дифференциальная геометрия. Мн., 1982;
Феденко А.С. Пространства с симметриями. Мн., 1977.
А.А.Гусак.
т. 5, с. 121