Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПрадмоваСкарачэнніКніга ў PDF/DjVu

ГЕНЕ́ТЫКА ПАПУЛЯ́ЦЫЙ,

гл. Папуляцыйная генетыка.

т. 5, с. 156

ГЕНЕ́ТЫКА ЧАЛАВЕ́КА,

раздзел генетыкі, які вывучае спадчыннасць і зменлівасць нармальных і анамальных прыкмет чалавека. Да яго адносяцца: дэтэрмінацыя фізіял., біяхім. і марфалагічных уласцівасцей асобных тканак і органаў чалавека, роля спадчыннасці і асяроддзя ў фарміраванні асобы, мутацыі чалавека і метады аховы яго генатыпу ад пашкоджанняў рознымі фактарамі асяроддзя, роля спадчыннасці пры ўзнікненні і развіцці паталагічных змен у чалавека і інш. Генетыку чалавека падзяляюць на антрапагенетыку, дэмаграфічную генетыку (генетыка народанасельніцтва), экалагічную генетыку (вучэнне пра генет. аспекты ўзаемаадносін чалавека з навакольным асяроддзем), імунагенетыку, генетыку медыцынскую (найб. важную галіну генетыку чалавека для практычных задач аховы здароўя) і інш. Асн. метады даследавання генетыкі чалавека: блізнятны (гл. Блізняты), генеалогіі, папуляцыйна-статыстычны (вывучэнне пашырэння асобных генаў або храмасомных анамалій у папуляцыях чалавека), цытагенетычны (аналіз карыятыпу чалавека) і інш. Даследаванні па генетыцы чалавека маюць вял. значэнне для развіцця медыцыны (паляпшэнне дыягностыкі, лячэння і прафілактыкі спадчынных захворванняў).

т. 5, с. 156

ГЕНЕТЫ́ЧНАЕ ВЫЗНАЧЭ́ННЕ ПО́ЛУ,

фарміраванне арганізмаў пэўнага полу ў залежнасці ад камбінацый генетычных фактараў, лакалізаваных у храмасомах. Пры гэтым мае значэнне і пэўны набор палавых храмасом, і дзеянне генаў, размешчаных у іх, а таксама ў аўтасомах. Палавыя храмасомы XX і XY, якія генетычна вызначаюць пол, фарміруюцца ў невял. колькасці двухдомных раслін (эладэя, смолка, некаторыя імхі), яны ёсць у чалавека і вышэйшых пазваночных жывёл (трапляюцца як выключэнне ў рыб і земнаводных) і ў многіх членістаногіх, павукападобных, насякомых і інш.

У чалавека звычайна вылучаюць некалькі ўзроўняў палавой дыферэнцыяцыі. Адзін з іх звязаны з наяўнасцю Y-храмасомы, прысутнасць якой неабходна для дыферэнцыяцыі палавых залоз (ганад) паводле мужчынскага тыпу. У мужчын фарміруецца 2 тыпы сперміяў: з X-храмасомай (23,X) і Y-храмасомай (23,Y). У яйцаклетак набор храмасом у норме 23,X. Апладненне яйцаклеткі сперміем 23,X прыводзіць да развіцця зародка жаночага полу (з наборам храмасом 46,XX), апладненне сперміем 23,Y вядзе да ўзнікнення зародка мужчынскага полу (46,XY). Фарміраванне полу плода першапачаткова залежыць ад тыпу спермія, які апладніў яйцаклетку (т.ч. за вызначэнне полу дзіцяці «адказвае» мужчына). Наяўнасць Y-храмасомы з’яўляецца першым фактарам, неабходным для фарміравання полу плода. Далейшае развіццё полу адбываецца пад кантролем H-Y антыгена, які кантралюецца Y-храмасомай. Калі H-Y антыген не ўтвараецца, ідзе развіццё паводле жаночага тыпу. Разам з тым і Y-храмасома, і H-Y антыген вызначаюць толькі генетычную дэтэрмінацыю полу, але не адказваюць за фарміраванне вонкавых палавых органаў, якія ў мужчын утвараюцца з вольфавых, а ў жанчын — з мюлеравых праток. Важная роля належыць гармонам, што выпрацоўваюцца клеткамі эмбрыянальных яечак. Парушэнні на храмасомным, антыгенным або гарманальным этапах вядуць да развіцця паводле жаночага тыпу. Зрэдку бываюць анамаліі псіхасексуальнай арыентацыі паводле полу (гл. Гомасексуалізм, Трансвестызм). Існуе мноства захворванняў (крыптархізм, манархізм, дысгенезія ганад і інш.), калі пад уплывам парушэнняў храмасом, генаў або знешніх фактараў развіццё палавых органаў індывіда адхіляецца ад звычайнага. Прагноз і лячэнне ў такіх выпадках залежаць ад характару захворвання.

т. 5, с. 156

ГЕНЕТЫ́ЧНАЯ ІЗАЛЯ́ЦЫЯ,

адрозненні спадчыннага апарата, якія прыводзяць да несумяшчальнасці палавых клетак; адна з форм рэпрадукцыйнай (біялагічнай) ізаляцыі. Адрозніваюць прэзігатычную (перашкаджае гібрыдызацыі паміж прадстаўнікамі розных папуляцый і тым самым прадухіляе ўтварэнне гібрыдных зігот) і постзігатычную (паніжае жыццяздольнасць або пладавітасць гібрыдаў) несумяшчальнасць. Абодва тыпы несумяшчальнасці не дапускаюць абмен генамі паміж папуляцыямі.

т. 5, с. 157

ГЕНЕТЫ́ЧНАЯ ІНЖЫНЕ́РЫЯ,

генная інжынерыя, раздзел малекулярнай біялогіі, звязаны з мэтанакіраваным канструяваннем новых спалучэнняў генаў, якіх няма ў прыродзе. Узнікла ў 1972 (П.Берг, ЗША). Разам з клетачнай інжынерыяй ляжыць у аснове сучаснай біятэхналогіі. Генетычная інжынерыя засн. на даставанні з клетак якога-небудзь арганізма гена (які кадзіруе неабходны прадукт) або групы генаў і злучэнні іх са спец. малекуламі ДНК (т.зв. вектарамі), здольнымі пранікаць у клеткі інш. арганізма (пераважна мікраарганізмаў) і размнажацца ў іх. Гал. значэнне пры генетычнай інжынерыі маюць ферменты — рэкстрыктазы, кожны з якіх рассякае малекулу ДНК на фрагменты ў вызначаных месцах, і ДНК-лігазы, што сшываюць малекулы ДНК у адзінае цэлае. Пасля выдзялення і вывучэння такіх ферментаў стала магчыма стварэнне штучных генет. структур. Рэкамбінантная малекула ДНК мае форму кальца, дзе размешчаны ген (гены) — аб’ект генет. маніпуляцый і вектар (фрагмент ДНК, які забяспечвае размнажэнне ДНК і сінтэз канчатковых прадуктаў жыццядзейнасці генет. сістэмы — бялкоў). Генетычная інжынерыя адкрывае новыя шляхі вырашэння некат. праблем генетыкі, медыцыны, сельскай гаспадаркі. З дапамогай генетычнай інжынерыі атрыманы шэраг біялагічна актыўных злучэнняў: інсулін і інтэрферон чалавека, авальбумін, калаген і інш. пептыдныя гармоны.

Э.В.Крупнова.

т. 5, с. 157

ГЕНЕТЫ́ЧНАЯ ІНФАРМА́ЦЫЯ,

праграма развіцця арганізма, атрыманая ад продкаў і закладзеная ў спадчынных структурах — генах. Запісана паслядоўнасцю нуклеатыдаў малекул нуклеінавых к-т (ДНК, у некат. вірусаў таксама РНК). Мае звесткі пра будову ўсіх ферментаў, структурных бялкоў і РНК клеткі, а таксама пра рэгуляцыю іх сінтэзу. Генетычная інфармацыя, якая счытваецца ў працэсе трансляцыі, складаецца са значэнняў трыплетаў генетычнага кода і ўключае знакі пачатку і заканчэння бялковага сінтэзу. У шматклетачных арганізмаў пры палавым размнажэнні генетычная інфармацыя перадаецца з пакалення ў пакаленне праз палавыя клеткі, у пракарыятычных мікраарганізмаў — праз трансдукцыю і трансфармацыю. Адрозніваюць 3 тыпы працэсаў пераносу генетычнай інфармацыі: агульны, уласцівы любым клеткам арганізма; спецыялізаваны (напр., у клетках, пашкоджаных вірусамі, генет. матэрыял якіх складаецца з РНК); забаронены перанос — працэсы, якія раней ніколі не былі зарэгістраваны (ад бялку да ДНК і РНК; ад бялку да бялку).

т. 5, с. 157

ГЕНЕТЫ́ЧНАЯ КА́РТА ХРАМАСО́М,

графічнае адлюстраванне адноснага размяшчэння генаў унутры (у межах) адной храмасомы. Для складання такой карты неабходна выяўленне многіх мутантных генаў і правядзенне вял. колькасці скрыжаванняў. На карце наносяць адноснае становішча генаў, якія знаходзяцца ў адной групе счаплення. Адлегласць паміж генамі вызначаюць па частаце кросінговера (велічыня перакрыжавання храмасом) для кожнай пары гамалагічных храмасом. Яе адзінка — марганіда, якая адпавядае 1% кросінговера. Генетычныя карты храмасом складзены для дразафілы (у ёй выяўлена больш за 1000 мутантных генаў), кукурузы (у 10 групах счаплення больш 400 генаў), памідораў, нейраспоры і інш. Звычайна генетычныя карты храмасом у эўкарыётаў лінейныя, бываюць і ў форме крыжа. Пры карціраванні генаў у бактэрый з дапамогай кан’югацыі атрымліваюць кальцавую генетычную карту храмасом. Генетычныя карты храмасом дазваляюць планаваць работу па атрыманні арганізмаў з вызначанымі спалучэннямі прыкмет, што выкарыстоўваецца ў генет. эксперыментах і селекцыйнай практыцы.

Э.В.Крупнова.

т. 5, с. 157

ГЕНЕТЫ́ЧНЫ ГРУЗ,

наяўнасць у папуляцыі (віду) лятальных і інш. адмоўных мутацый, якія пры пераходзе у гомазіготны стан выклікаюць гібель асобін або зніжэнне іх жыццяздольнасці; у шырокім сэнсе — зніжэнне (сапраўднае або патэнцыяльнае) прыстасаванасці папуляцыі, што ўзнікае пры наяўнасці генетычнай зменлівасці. Тэрмін увёў амер. генетык Г.Мёлер у 1940-я г. Крыніцамі генетычнага грузу служаць мутацыйныя і сегрэгацыйныя працэсы. Адпаведна адрозніваюць мутацыйны, збалансаваны (сегрэгацыйны) і субстытуцыйны (пераходны) генетычны груз. Кожная папуляцыя нясе ў сабе генетычны груз, частка якога адбываецца за кошт паўторнай мутацыі, частка — за кошт эфекту звышдамінавання. У абодвух выпадках гомазіготы (гл. Гомазіготнасць) маюць адмоўнае праяўленне. Аднак паняцце шкоднасці мутацый адноснае, таму што генетычны груз можа адначасова быць і генетычным рэзервам эвалюцыі дзякуючы падтрымцы генетычнай разнастайнасці папуляцый. Вывучэнне генетычнага грузу ў выглядзе шкодных мутацый у чалавека (спадчынныя хваробы) мае важнае значэнне для вырашэння практычных пытанняў мед. генетыкі.

Э.В.Крупнова.

т. 5, с. 157

ГЕНЕТЫ́ЧНЫ КОД,

адзіная сістэма «запісу» спадчыннай інфармацыі ў малекулах нуклеінавых кіслот у выглядзе паслядоўнасці нуклеатыдаў, што ўваходзяць у склад генаў. Уласцівы ўсім жывым арганізмам (у т. л. вірусам) і заснаваны на індывід. адрозненні ў наборах і ўзаемаразмяшчэнні чатырох азоцістых асноў (адэніну, гуаніну, цытазіну, урацылу) у малекулах ДНК або РНК. Адзінкай генетычнага кода служыць кадон, або трыплет (трынуклеатыд). Генетычны код, запісаны ў малекуле ДНК, вызначае парадак размяшчэння амінакіслот у бялковай малекуле, ад якога залежыць уласцівасць самога бялку. Зыходзячы з таго, што малекула ДНК складаецца з дзесяткаў тысяч нуклеатыдаў, практычна дапускаецца неабмежаваная колькасць спалучэнняў азоцістых асноў і магчымасць кадзіравання ўсіх бялкоў у арганізме.

Сутнасць генетычнага кода, прынцыпы будовы і асн. ўласцівасці (універсальнасць, здольнасць да выраджэння, трыплетнасць) эксперыментальна выявілі ў 1961—65 амер. вучоныя Ф.Крык і С.Брэнер, М.Нірэнберг, С.Ачоа, Х.Карана і інш. Рэалізацыя генетычнага кода ў жывых клетках ажыццяўляецца ў працэсе сінтэзу матрычнай РНК на ДНК гена (транскрыпцыя) і сінтэзу бялку (трансляцыя), пры якім паслядоўнасць нуклеатыдаў гэтай РНК пераводзіцца ў адпаведную паслядоўнасць амінакіслот бялковай малекулы. 61 кадон з 64 кадзіруюць пэўныя амінакіслоты, 3 адказваюць за заканчэнне сінтэзу бялку. Некалькі кадонаў могуць кадзіраваць адну і тую ж амінакіслату (выраджальнасць генетычнага кода), але адзін і той жа кадон адпавядае толькі адной амінакіслаце. За рэдкім выключэннем генетычны код універсальны — аднолькавы для ўсіх арганізмаў.

Э.В.Крупнова.

т. 5, с. 157

ГЕНЕТЫ́ЧНЫ ФОН,

гл. Генатыпічнае асяроддзе.

т. 5, с. 157