ВЫШЭ́ЙШАЯ АДУКА́ЦЫЯ,

падрыхтоўка спецыялістаў вышэйшай кваліфікацыі для патрэб навукі, тэхнікі, культуры. На Беларусі ствараецца шматузроўневая сістэма вышэйшай адукацыі (гл. Вышэйшыя навучальныя ўстановы). Яна дазваляе пашырыць магчымасці вышэйшай школы ў забеспячэнні культ.-адукац. запатрабаванняў асобы і грамадства; павысіць гнуткасць агульнаадук., навук. і прафес. падрыхтоўкі спецыялістаў з улікам патрабаванняў эканомікі і рынку працы; стварыць умовы для больш поўнага забеспячэння падрыхтоўкі моладзі па кірунках, што адпавядаюць яе здольнасцям і інтарэсам. Шматузроўневая сістэма заснавана на прынцыпах дзярж. палітыкі ў галіне адукацыі, вызначаных законам «Аб адукацыі ў Рэспубліцы Беларусь» (1991) і міжнар. стандартнай кваліфікацыяй, прынятай ЮНЕСКА. Структура гэтай сістэмы мае 2 узроўні: 1-ы ўзровень (падрыхтоўка спецыяліста з вышэйшай адукацыяй, тэрмін навучання 4—5 гадоў) складаецца з 2 ступеняў. Першая ступень — 2 гады навучання, дае студэнту базавую падрыхтоўку (агульную гуманітарную, агульную навук. і пэўны аб’ём прафесійнай); 2-я ступень — працяг навучання 2—3 гады, дае прафес. падрыхтоўку па спецыяльнасці разам з дадатковай гуманітарнай і навук., у т. л. па праграме бакалаўрыята (гл. Бакалаўр). 2-і ўзровень (тэрмін навучання 1—2 гады) прадугледжвае спецыялізаваную (паглыбленую) падрыхтоўку спецыялістаў, якія маюць вышэйшую адукацыю, у канкрэтным кірунку прафес. дзейнасці, падрыхтоўку магістраў.

А.П.Сманцар, С.В.Снапкоўская.

т. 4, с. 333

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛЫ́Н,

комплексныя злучэнні, крышталегідраты двайных сульфатаў саставу M​1M​III(SO4)2∙12H2O ці M​I2SO4 × M2III(SO4)3∙24H2O (M​I — адназарадны катыён: Na​+, K​+, Rb​+, Cs​+, NH4+ і інш.; M​III — трохзарадны катыён: Al​3+, Cr​3+, Fe​3+, Ga​3+ і інш.). Існуюць таксама селенатны галын саставу M​IM​III(SeO4)2∙12H2O і т.зв. псеўдагалын, які ўтвараюць двухзарадныя катыёны, напр. FeSO4xAl2(SO4)3∙24H2O.

Вядома некалькі дзесяткаў галынаў. Пры звычайных умовах устойлівыя крышт. рэчывы з вяжучым, кіслым смакам. На ўласцівасці галынаў больш значна ўплывае адназарадны катыён M​+, У галынаў, якія маюць аднолькавы катыён M​3+, у радзе Na, K, NH4, Rb, Cs растваральнасць у вадзе памяншаецца, т-ра плаўлення і тэрмічная ўстойлівасць павялічваюцца (напр., алюманатрыевы галын мае tпл 61 °C, алюмацэзіевы — 117 °C). Пры награванні плавяцца ў крышталізацыйнай вадзе, потым дэгідратуюць у 2 ці некалькі стадый. Прадукт дэгідратацыі — галын бязводны ці палены.

У прыродзе трапляецца алюмакаліевы, алюманатрыевы (мінерал чэрмігіт). Выкарыстоўваюць у асн. алюмініевы галын, хромава-каліевы (гл. Хромавы галын) і жалеза-амоніевы для дублення скуры, праклейвання паперы, як пратраву пры фарбаванні тканін, каагулянты пры водаачыстцы, рэактывы ў фатаграфіі.

І.В.Боднар.

т. 4, с. 475

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́МА-ВЫПРАМЯНЕ́ННЕ

(γ-выпрамяненне),

караткахвалевае эл.-магн. выпрамяненне з даўжынёй хвалі, меншай за 2·10​-10 м. Узнікае пры распадзе радыеактыўных ядраў (гл. Радыеактыўнасць), тармажэнні хуткіх зараджаных часціц у рэчыве (гл. Тармазное выпрамяненне), сінхратронным выпрамяненні, а таксама пры анігіляцыі электронна-пазітронных пар і ў інш. ядз. рэакцыях. З прычыны кароткай даўжыні хвалі ў гама-выпрамяненні выразныя карпускулярныя ўласцівасці (гл. Комптана эфект, Фотаэфект), хвалевыя (дыфракцыя, інтэрферэнцыя) выражаны слаба.

Асн. характарыстыка гама-выпрамянення — энергія асобнага γ-кванта Eγ =hν, дзе h — Планка пастаянная, ν — частата выпрамянення. Пры пераходзе ядра атама з узбуджанага стану з энергіяй Eі у больш нізкі энергет. стан Ek выпрамяняецца γ-квант з энергіяй Eγ = Ei = Ek Eγ = Ei — Ek. У выніку гэтага гама-выпрамянення ядраў мае лінейчасты спектр. Натуральныя радыеактыўныя крыніцы даюць гама-выпрамяненню з энергіяй да некалькіх мегаэлектронвольтаў (МэВ), у ядз. рэакцыях атрымліваюцца γ-кванты з энергіяй да дзесяткаў Мэв, а пры тармазным выпрамяненні — да соцень Мэв і больш. Гама-выпрамяненне — адно з найбольш пранікальных выпрамяненняў (пранікальнасць залежыць ад энергіі γ-квантаў і шчыльнасці рэчыва).

Гама-выпрамяненне выкарыстоўваецца для выяўлення дэфектаў у вырабах і дэталях (гл. Дэфектаскапія), экспрэснага колькаснага вызначэння волава ў рудах, стэрылізацыі харч. прадуктаў, гаматэрапіі злаякасных пухлін і інш.

А.І.Болсун.

т. 5, с. 8

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАМЕТРЫ́ЧНАЯ ІЗАМЕ́РЫЯ,

цыс-транс-ізамерыя, з’ява існавання малекул рознай прасторавай будовы пры аднолькавай паслядоўнасці і тыпе хім. сувязей у злучэнні; від прасторавай ізамерыі. З’яву геаметрычнай ізаметрыі растлумачыў Я.Х.вант Гоф (1874).

Геаметрычная ізаметрыя ўласцівая злучэнням з падвойнымі сувязямі (найчасцей С=С і С=N), вакол якіх немагчыма свабоднае вярчэнне атамаў, і цыклічным злучэнням з малымі (неараматычнымі) цыкламі. Магчыма, калі атам вугляроду пры падвойнай сувязі ці ў цыкле мае неаднолькавыя замяшчальнікі (групоўку атамаў тыпу RRC = CRR′), якія па-рознаму размешчаны адносна плоскасці падвойнай сувязі (гл. Кратныя сувязі) ці кольца ў цыклічных злучэннях. Існуюць 2 формы геам. ізамераў: цыс-ізамеры — аднолькавыя замяшчальнікі знаходзяцца па адзін бок ад плоскасці падвойнай сувязі (формула 1) ці кольца (формула 3), транс-ізамеры — па розныя бакі (формулы 2, 4). У цыклічных злучэннях адначасова з геаметрычнай ізаметрыяй магчыма і аптычная ізамерыя. Геам. ізамеры маюць розныя фіз. і хім. ўласцівасці. Цыс-ізамеры даволі лёгка (пад уздзеяннем святла, цяпла, хім. рэагентаў) пераходзяць у больш устойлівыя транс-ізамеры, напр., малеінавая кіслата. Геаметрычная ізамерыя ўласцівая і палімерам, напр., гутаперча (транс-поліізапрэн), каўчук натуральны (цыс-полііэалрэн).

Літ.:

Потапов В.М. Стереохимия. 2 изд. М., 1988.

М.Р.Пракапчук.

т. 5, с. 120

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАЛАКА́ТАР

(ад гідра... + лакатар),

гідралакацыйная станцыя, комплекс прылад і прыстасаванняў для пошуку падводных аб’ектаў, вымярэння іх прасторавых каардынат і параметраў руху, а таксама вызначэння іх прыроды шляхам аналізу адбітых акустычных сігналаў (рэхасігналаў); сродак актыўнай гідралакацыі. Выкарыстоўваюцца ў мараплаўстве (для вызначэння падводных перашкод), у ваен. справе (пошук цэлей, забеспячэнне дзеяння зброі), для картаграфавання дна і адшуквання затанулых аб’ектаў (гідралакатар бакавога агляду і рэхалоты), пры выратавальных работах, у рыбапрамысл. разведцы і інш.

Гідралакатар мае: генератар эл. сігналаў зададзенага віду (імпульсных, неперарыўных, простых, складаных, з рознымі мадуляцыямі); перадавальную і прыёмную акустычныя антэны, якія апускаюцца ў ваду (уяўляюць сабой электраакустычныя пераўтваральнікі эл. сігналаў у акустычныя і наадварот; можа выкарыстоўвацца адна антэна з пераключальнікам «перадача-прыём»); прыстасаванне вылучэння і апрацоўкі рэхасігналаў, якія прымаюцца на фоне перашкод (шумы мора і суднаходства); прыстасаванні адвображання інфармацыі пра аб’екты, якая ўтрымліваецца ў рэхасігналах. Існуе мноства разнавіднасцей гідраклакатараў, якія ўстанаўліваюцца на суднах, самалётах і верталётах, на дне акіяна, а таксама дрэйфуюць, пераносяцца вадалазамі і г.д. У большасці выпадкаў гідралакатары працуюць на частотах ад адзінак да 100 кГц і маюць далёкасць дзеяння да дзесяткаў кіламетраў.

Літ.:

Митько В.Б., Евтютов А.П., Гущин С.Е. Гидроакустические средства связи и наблюдения. Л., 1982;

Колчеданцев А.С. Гидроакустические станции. Л., 1982.

В.І.Вараб’ёў.

т. 5, с. 227

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРАМАДЗЯ́НСКАЯ АВІЯ́ЦЫЯ,

галіна вытв-сці і абслугоўвання, прызначаная для перавозак людзей і грузаў, выкарыстання ў сан. і проціпажарнай службах, сельскай гаспадарцы, геолагаразведцы і інш. Першая трансп. авіялінія на Беларусі адкрыта ў 1932 па маршруце Мінск—Глуск—Парычы—Мазыр (курсіравалі 3 самалёты, вазілі пераважна пошту). Перавозка пасажыраў пачалася з 1938 па лініі Мінск—Масква (гл. Паветраны транспарт). Пасля 2 сусв. вайны прамыя паветр. лініі звязалі Мінск з абл. цэнтрамі і інш. гарадамі рэспублікі і СССР. Сучасная грамадзянская аавіяцыя Рэспублікі Беларусь мае паветр. сувязь больш як з 50 краінамі, у т. л. з Англіяй, Германіяй, Кітаем, ЗША і інш. Працуюць 5 авіякампаній, у т. л. «Белавія» — Беларускае аб’яднанне грамадзянскай авіяцыі. На лініях эксплуатуюцца самалёты ТУ-134, ТУ-154 (розных мадыфікацый), АН-26, АН-24, ЯК-40 і інш., верталёты К-26, Мі-2 і інш. Рамантуюць лятальныя апараты Мінскі авіярамонтны завод, авіярамонтныя з-ды ў Баранавічах і пад Оршай. Спецыялістаў для грамадзянскай авіяцыі рыхтуе Мінскі авіяцыйны каледж, спец. навуч. ўстановы інш. краін СНД. Перавозкі грамадзянскай авіяцыі забяспечваюць міжнар. аэрапорты Мінск-1, Мінск-2, у Брэсце, Гомелі, Гродне, нац. і мясц. ў абл. цэнтрах, а таксама ў Мазыры, Пінску, Полацку, Салігорску і інш. Гл. таксама Аэрапорт, Авіяцыя.

т. 5, с. 390

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРАМНІ́ЦЫ,

стрэчанне, у беларускім нар. календары свята ачышчэння з дапамогай агню. Яго адметнасць — асаблівы чын асвячэння стрэчанскіх свечак, якія ў народзе называюць грамнічнымі. У хрысціянстве з’явіліся ў 6 ст. на тэр. Рымскай імперыі і трактуюцца як своеасаблівая повязь Старога запавету з Новым. Усталявана ў памяць аб сустрэчы (царкоўна-слав. — «стрэчанне») немаўляці Ісуса Хрыста (носьбіта Новага запавету) з прадстаўнікамі Старога запавету старцам Сімяонам і Ганнай-прарочыцай у Іерусалімскім храме. Паводле старазапаветнага закону на саракавы дзень пасля нараджэння першынца-хлопчыка бацькі павінны былі прынесці дзіця ў храм, што і зрабілі Божая маці і Іосіф. У праваслаўі святкуецца 15 лютага, у каталіцызме — 2 лютага (мае назву Дзень Грамнічнай Божай Маці або Ахвяраванне Гасподняе). У дзень грамніц асвячаюць васковыя свечкі, якімі карыстаюцца як засцярогай пры прыняцці нованароджанага, у вясельных і пахавальных абрадах, для варажбы. Лічыцца, што спальванне свечак адпужвае ад чалавека нечысць, ахоўвае ад ведзьмаў і чарадзеяў, ад навальніцы і маланак, дапамагае пры хваробе, абараняе жывёлу. Беларусы запальваюць свечкі на Дзяды, Каляды, Вадохрышча, Купалле, Вялікдзень. Грамнічныя свечкі шануюць, іх нельга перадаваць у інш. сям’ю, нават родным і сваякам. З грамніцамі звязаны шэраг метэаралагічных прыкмет.

А.У.Верашчагіна.

т. 5, с. 402

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРАНА́Т

(Punica),

род кветкавых раслін сям. гранатавых. 2 віды. Пашыраны ў Пярэдняй, Сярэдняй і Малой Азіі. Растуць у гарах на сухіх скалістых, друзаватых і гліністых схілах, у далінах рэк. Найб. вядомы гранат звычайны (Р. granatum). На Беларусі яго вырошчваюць у аранжарэях.

Лістападныя галінастыя кусты або невял. дрэвы выш. да 5—10 м з шарападобнай кронай і калючымі парасткамі. Лісце скурыстае, вясной афарбавана ў чырв. колер. Кветкі адзіночныя або сабраныя ў пучкі па 3—5 на канцах галінак, ярка-пурпуровыя, аранжава-чырвоныя (зрэдку белыя ці жаўтаватыя, ёсць дэкар. формы з махрыстымі кветкамі). Плод несапраўдны ягадападобны (гранаціна), са скурыстым покрывам (каляплоднікам) і 6—12 гнёздамі, якія напоўнены насеннем з сакавітым вонкавым слоем насеннай лупіны; маса да 800 гкульт. сартоў) і болей. Размнажаецца вегетатыўна, рэдка насеннем. З даўніх часоў гранат культывуюць у субтрапічных краінах як пладовыя і дэкар. расліны. Вядома больш за 100 сартоў. Плады спажываюць, перапрацоўваюць. Сакаўная абалонка насення мае да 75% соку, багатага вітамінам С. У кары ёсць дубільныя рэчывы (да 32%), алкалоіды і інш., у скурцы пладоў — дубільнікі і фарбавальнікі, выкарыстоўваецца ў медыцыне як процігліставы і проціцынготны сродак.

Г.У.Вынаеў.

т. 5, с. 405

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГУ́БАВЫЯ ГРЫБЫ́,

група сям. базідыяльных грыбоў парадку афілафаральных. Вядома больш за 1 тыс. відаў, пашыраных па ўсім зямным шары. На Беларусі больш за 200 відаў і формаў з 62 родаў: карыёл, летыпор, грыфала, гіменахета, шчыліналіснік, фомес, дэдалея, аксіпор і інш. Губавыя грыбы — актыўныя разбуральнікі драўніны. Пераважна сапратрофы, растуць на адмерлай драўніне, пнях, радзей на глебе, пашкоджваюць драўляныя збудаванні (дамавыя грыбы). Некат. паразіты, пасяляюцца на жывых дрэвах (напр., фелінус, інанотус, фамітопсіс), зніжаюць выхад дзелавой драўніны. Драўніна з пач. стадыяй пашкоджання некат. губавымі грыбамі (напр., сапраўдным, кляновым) мае прывабны ўзорысты малюнак і ідзе на выраб муз. інструментаў, сувеніраў. Губавыя грыбы мінералізуюць арган. рэчывы, садзейнічаюць аднаўленню ўрадлівасці глебы. Некат. маюць антыбіятычныя і інш. ўласцівасці, выкарыстоўваюцца ў медыцыне (чага, сапраўдная губа, лістоўнічная губка, ганадэрма), ёсць ядомыя (бяляк, пячоначніца звычайная, серна-жоўтая губа).

Міцэлій шматгадовы, гіфы тонкія, разгалінаваныя. Пладовыя целы адна-, двух- і шматгадовыя, масай да 10 кг, распасцёртыя (да 1,5 м), распасцёрта-адагнутыя, сядзячыя, некат. дыферэнцыраваны на ножку і шляпку; кансістэнцыя мясістая, скурыстая або дравяністая; колер ад белага, жаўтаватага і шэрага да чырвонага, бурага і чорнага. Пры адміранні высыхаюць. Гіменафор звычайна трубчасты, радзей лабірынтападобны або пласціністы. Споры цыліндычныя, эліпса- ці шарападобныя, разносяцца ветрам. А.І.Галаўко.

т. 5, с. 514

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЯЛКО́ВЫ АБМЕ́Н,

сукупнасць хім. пераўтварэнняў бялкоў і амінакіслот у жывых арганізмаў; важнейшая частка абмену рэчываў (у спалучэнні з пераўтварэннямі інш. азотазмяшчальных рэчываў утварае сістэму азоцістага абмену). Два ўзаемазвязаныя бакі бялковага абмену ў арганізме — распад (катабалізм) і біясінтэз (анабалізм) бялкоў. Першая стадыя аднаўлення бялкоў — іх гідроліз да амінакіслот пры дапамозе ферментаў катэпсінаў (тканкавых пратэіназаў), што лакалізаваны пераважна ў лізасомах (дзейнічаюць у кіслым асяроддзі). Амінакіслоты ўтвараюцца і пры гідролізе (ператраўленні) харч. бялкоў пад уздзеяннем пратэалітычных ферментаў (пратэазаў) страўнікава-кішачнага тракту (пепсін, трыпсін, хіматрыпсін, эластаза, экзапептыдазы), якія ўсмоктваюцца ў ім і трапляюць у клетку. Толькі такім шляхам паступаюць у арганізм неабходныя яму незаменныя амінакіслоты. У клетках амінакіслоты ўтвараюць амінакіслотны фонд клеткі, выкарыстоўваюцца на сінтэз пептыдаў, бялкоў, пурынаў, пірымідзінаў, гемапратэінаў, вугляводаў, ліпідаў, нізкамалекулярных гармонаў і інш. рэчываў, уступаюць у асн. агульныя рэакцыі абмену: пераамініраванне, дэзамініраванне і дэкарбаксіліраванне.

Пры пераамініраванні (трансмініраванні) α-амінагрупа адшчапляецца ад L.-амінакіслот і пераносіцца ў асноўным на α-вуглярод α-кетаглутаравай кіслаты. Гэта рэакцыя мае асабліва вял. значэнне пры біясінтэзе амінакіслот у раслінах: нітраты і нітрыты, што трапляюць у расліны з глебы, аднаўляюцца з утварэннем аміяку, які звязваецца з α-кетаглутаравай кіслатой; утвараецца глутамінавая кіслата. Амінагрупа гэтай кіслаты ў працэсе рэакцыі пераносіцца на кетакіслоты з утварэннем інш. амінакіслот. Пры дэзамініраванні адбываецца распад амінакіслот з выдзяленнем аміяку. Найб. значэнне ў арганізме жывёл і чалавека мае акісляльнае дэзамініраванне, пры якім утвараецца кетакіслата і аміяк. Утвораныя пры пераамініраванні і акісляльным дэзамініраванні α-кетакіслоты здольныя аднаўляцца з утварэннем амінакіслот, якія ў працэсе катабалізму могуць выкарыстоўвацца на сінтэз глюкозы і ацэтонавых цел. Пры дэкарбаксіліраванні амінакіслот вылучаецца вуглякіслы газ (CO2) і ўтвараюцца аміны, а пры дэкарбаксіліраванні араматычных амінакіслот — біягенныя аміны (трыптамін, сератанін, гістамін, γ-амінамасляная кіслата). Аміяк, што ўтвараецца пры дэзамініраванні амінакіслот і амінаў, таксічны для арганізма. Абясшкоджванне яго адбываецца пры аднаўленчым амініраванні, у рэакцыях сінтэзу глутаміну і аспаргіну, у цыкле сінтэзу мачавіны ў печані (у чалавека, млекакормячых і некат. інш. жывёл) ці мачавой кіслаты (у птушак, рэптылій, насякомых). У чалавека і жывёл мачавіна выдаляецца з арганізма з мачой, часткова ў выглядзе аманійных соляў, у раслін магчыма паўторнае яе ўключэнне ў працэсы сінтэзу бялку. Збалансаваны па паступленні (у т. л. ў складзе незаменных амінакіслот) і выдаленні азоту, бялковы абмен вызначае фарміраванне ў арганізме стану азоцістай раўнавагі, калі патрэба яго ў бялках можа быць мінімальнай (гл. Бялковы мінімум). Рэгулюецца бялковы абмен ў чалавека і жывёл ферментамі, гармонамі пры ўдзеле нерв. сістэмы (гл. Нейрагумаральная рэгуляцыя, Гарманальная рэгуляцыя).

Літ.:

Строев Е.А. Биологическая химия. М., 1986;

Николаев А.Я. Биологическая химия. М., 1989;

Березов Т.Т., Коровкин Б.Ф. Биологическая химия. 2 изд. М., 1990.

В.К.Кухта.

т. 3, с. 398

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)