Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЯ́ЗКАСЦЬ,
унутранае трэнне, уласцівасць газаў, вадкасцей і цвёрдых цел супраціўляцца іх цячэнню (для цвёрдых цел — развіццю астаткавых дэфармацый) пад уздзеяннем вонкавых сіл. Характарызуе сілавое ўзаемадзеянне (інтэнсіўнасць перадачы імпульсу) паміж слаямі вадкасці (газу) пры любых цячэннях. Звязана са структурай рэчыва і адлюстроўвае фіз.-хім. змены ў рэчывах пры тэхнал. працэсах. Гелій мае асаблівыя вязкасныя ўласцівасці — звышцякучасць.
Вязкасць газаў абумоўлена цеплавым рухам малекул (вынік пастаяннага абмену малекуламі паміж слаямі і таму для надзвычай разрэджаных газаў паняцце вязкасці страчвае сэнс), вадкасцей — міжмалекулярным узаемадзеяннем. Пры ламінарным цячэнні вязкіх вадкасцей і газаў (закон І.Ньютана; 1687) датычная сіла трэння, што выклікае зрух слаёў вадкасцей (газаў) адносна адзін аднаго, прапарцыянальная градыенту скорасці ў напрамку, перпендыкулярным слою, што разглядаецца, і плошчы слоя, пры якім адбываецца зрух; каэфіцыент прапарцыянальнасці наз. дынамічнай вязкасцю η (характарызуе інтэнсіўнасць ператварэння работы знешніх сіл у цеплыню). Кінематычная вязкасць , дзе ρ — шчыльнасць вадкасці (газу). У цвёрдых целах вязкасць характарызуе ўласцівасць неабарачальна паглынаць мех. энергію пры пластычных дэфармацыях; вызначаецца адносінамі работы дэфармацыі да папярочнага сячэння (або аб’ёму) узору. Гл. таксама Рэалогія.
т. 4, с. 340
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВА́КУУМ у квантавай тэорыі поля, асноўны (энергетычна найніжэйшы) стан квантавых палёў, узбуджэнні якога супастаўляюцца адпаведным элементарным часціцам. Характарызуецца мінім. энергіяй, нулявымі імпульсамі, момантам імпульсу, эл. зарадам і інш. квантавымі лікамі. Пад вакуумам разумеюць таксама стан поля, дзе адсутнічаюць якія-н. рэальныя часціцы.
Флуктуацыі вакуума тыпу часціца — антычасціца абумоўліваюць спантаннае выпрамяненне атамаў, рассеянне святла па святле, зрух атамных узроўняў, экранаванне эл. зараду і антыэкранаванне каляровага зараду ў квантавай хромадынаміцы (т.зв. асімптатычная свабода). Вакуум можа мець іншую сіметрыю, чым ураўненні зыходнай квантавай тэорыі (напр., В.Хігса, θ — вакуум). Вакуум нагадвае кандэнсаванае асяроддзе, таму ў ім могуць адбывацца палярызацыя, фазавыя пераходы і інш. эфекты, якія вывучаюцца і ў шэрагу выпадкаў з высокай дакладнасцю пацверджаны эксперыментальна.
Літ.:
Гл. пры арт. Квантавая тэорыя поля.
Я.А.Таўкачоў.
т. 3, с. 464
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БІЯГЕАГРАФІ́ЧНАЕ РАЯНАВА́ННЕ,
падзел зямнога шара па супольнасці гісторыка-эвалюц. развіцця фауны і флоры. Вылучаюць царствы і падцарствы, якія падзяляюцца на біягеагр. вобласці. Царства Палеагею ўключае Эфіопскую, Інда-Малайскую, Мадагаскарскую і Палінезійскую вобласці; царства Арктагею складаецца з 2 падцарстваў — Палеарктычнага з Еўрап.-Сібірскай, Стараж. Міжзем’я, Усх.-Азіяцкай абласцямі і Неарктычнага з Канадскай і Санорскай абласцямі; царства Неагею ўтвараюць Неатрапічная і Карыбская, царства Натагею — Аўстралійская, Новазеландская, Патагонская вобласці. Кожная біягеагр. вобласць аддзелена ад іншых значнымі перашкодамі (вузкім перашыйкам, высокімі гарамі, пустыняй, акіянам, пралівам), якія не даюць магчымасці пашырацца жывёлам і раслінам. Флора і фауна ўнутры вобласці характарызуюцца, як правіла, высокай ступенню аднароднасці. Віды і групы відаў якога-н. рэгіёна звязаны агульнасцю паходжання (месца і час) і аб’яднаны ў фларыстыка-фауністычныя комплексы. Пры пераходзе ад адной вобласці да другой назіраецца рэзкі зрух у таксанамічным складзе на ўзроўні родаў і сямействаў.
т. 3, с. 166
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АДБІЦЦЁ СВЯТЛА́,
частковае ці поўнае вяртанне ў першае асяроддзе светлавога патоку, які падае на мяжу двух асяроддзяў з рознымі паказчыкамі пераламлення. Адбівальная здольнасць цела залежыць ад аптычных уласцівасцяў сумежных рэчываў, даўж. хвалі λ святла, якое падае, і якасці адбівальнай паверхні.
Калі няроўнасці паверхні падзелу меншыя за λ, наглядаецца люстраное адбіццё святлас. Пры гэтым выконваюцца 2 законы адбіцця святла: адбіты прамень S′ ляжыць у адной плоскасці з праменем S, што падае, і перпендыкулярам ON да адбівальнай паверхні ў пункце падзення; вугал адбіцця Z′ роўны вуглу падзення α (рыс. 1). Калі няроўнасці адбівальнай паверхні большыя за λ, святло адбіваецца па ўсіх напрамках у межах паўсферы — дыфузнае адбіццё (рыс. 2). У 1954 Ф.І.Фёдаравым адкрыта з’ява перпендыкулярнага да плоскасці падзення зруху адбітага пучка святла (гл. Фёдарава зрух). Асобны выпадак адбіцця святла — поўнае ўнутранае адбіццё. Памяншэнне адбіцця святла дасягаецца прасвятленнем оптыкі; для павелічэння адбіцця на люстраныя паверхні наносяць метал. дыэлектрычныя пакрыцці. Гл. таксама Пераламленне святла.
т. 1, с. 97
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АСЦЫЛО́ГРАФ
(ад лац. oscillum ваганне + ...граф),
вымяральная прылада для графічнага назірання і запісу функцыянальных сувязяў паміж эл. велічынямі, што характарызуюць які-н. фізічны працэс. З дапамогай асцылографа вызначаюць змены сілы току і напружання ў часе, вымяраюць частату, зрух фазаў, характарыстыкі электравакуумных і паўправадніковых прылад, а з дапамогай спец. датчыкаў (напр., тэрмапары) неэл. велічыні: т-ру, ціск, паскарэнне і інш. Асцылографы бываюць нізка- (да 1 МГц) і высокачастотныя (да 100 МГц і вышэй), адна- і многапрамянёвыя, імпульсныя, запамінальныя, спец. тэлевізійныя і інш.
Святлопрамянёвы асцылограф складаецца з люстранага гальванометра (шлейфа), святлоаптычнай сістэмы і прыстасаванняў для працягвання святлоадчувальнага носьбіта запісу (напр., фотапаперы) і непасрэднага назірання, вызначальніка часу. Бывае з фатаграфічным, электраграфічным, ультрафіялетавым і камбінаваным запісам адхілення светлавога праменя, адбітага ад шлейфа, скорасць працягвання носьбіта запісу да 5000 мм/с. Можна адначасова даследаваць да 64 розных працэсаў, напрыклад пры вывучэнні вібрацый і дэфармацый у самалётах, турбінах. Электроннапрамянёвы асцылограф прызначаны для непасрэднага назірання і фатаграфавання эл. працэсаў на экране электроннапрамянёвай трубкі (ЭПТ). Сігнал падаецца на вертыкальна адхіляльныя пласціны (шпулі) ЭПТ, напружанне разгорткі пры назіранні часавай залежнасці — на гарызантальна адхіляльныя.
Літ.:
Аршвила С.В., Борисевич Е.С., Жилевич И.И. Электрографические светолучевые осциллографы. М., 1978;
Линт Г.Э. Автоматические осциллографы при измерениях. М., 1972.
П.С.Габец.
т. 2, с. 63
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)