АНАЛІТЫ́ЧНАЯ ГЕАМЕ́ТРЫЯ,

раздзел геаметрыі, у якім уласцівасці геаметрычных аб’ектаў (пунктаў, ліній, паверхняў) даследуюцца сродкамі алгебры на падставе метаду каардынат (праз вывучэнне ўласцівасцяў ураўненняў, графікамі якіх гэтыя аб’екты з’яўляюцца).

Узнікненне метаду каардынат звязана з развіццём у 17 ст. астраноміі, механікі, тэхнікі. Асновы аналітычнай геаметрыі заклалі Р.Дэкарт (1637) і П.Ферма (1629); далейшае развіццё звязана з працамі Г.Лейбніца, І.Ньютана, Л.Эйлера, Ж.Лагранжа, Г.Монжа, С.Лакруа і інш. Асн. задача аналітычнай геаметрыі на плоскасці — даследаванне ліній 1-га (прамыя) і 2-га (эліпс, гіпербала, парабала) парадку, якія ў дэкартавых каардынатах вызначаюцца алг. ўраўненнямі адпаведна 1-й і 2-й ступені. Аналітычная геаметрыя ў прасторы даследуе паверхні 1-га (плоскасці) і 2-га (эліпсоід, гіпербалоід, парабалоід, конус, цыліндр) парадку, якія вызначаюцца алг. ўраўненнямі адносна дэкартавых каардынат адпаведна 1-й і 2-й ступені.

Метад даследавання і класіфікацый ліній і паверхняў прадугледжвае адшуканне такой прамавугольнай сістэмы каардынат, у якой адпаведнае ўраўненне набывае найб. просты выгляд. Метадамі аналітычнай геаметрыі карыстаюцца ў матэматыцы, фізіцы, механіцы, тэхніцы і інш. На Беларусі значны ўклад у развіццё аналітычнай геаметрыі зрабілі У.К.Дыдырка («Цыркулярныя крывыя 3-га парадку» — 1-я на Беларусі матэм. манаграфія, 1928) і І.К.Богаяўленскі («Аналітычная геаметрыя» — 1-ы беларускамоўны падручнік па вышэйшай матэматыцы, 1932).

Літ.:

Тышкевич Р.И., Феденко А.С. Линейная алгебра и аналитическая геометрия. 2 изд. Мн., 1976.

А.А.Гусак.

т. 1, с. 334

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БОН

(Bonn),

горад у Германіі, у зямлі Паўн. Рэйн-Вестфалія; месца часовага знаходжання парламента і ўрада краіны. 296,9 тыс. ж. (1994). Вузел чыгунак і аўтадарог, порт на Рэйне. Міжнар. аэрапорт Кёльн-Бон. Прадпрыемствы паслуг, дакладнай механікі і оптыкі, эл.-тэхн., папяровай, фармацэўтычнай, паліграф., харч., тытунёвай, мэблевай, керамічнай, алюмініевай прам-сці. У Боне знаходзіцца гандл.-прамысл. палата ФРГ, шматлікія праўленні прамысл. і фін. канцэрнаў і інш. Раён Бад-Годэсберг — курорт з мінер. водамі. Ун-т (з 1818). Музеі: зямлі Рэйнланд, Гар. маст. збор Бона, Акад. маст. музей Бонскага ун-та, Дом-музей Л.Бетховена (нарадзіўся ў Боне), Бетховенгале, дзе кожныя 2 гады праводзіцца Міжнар. муз. фестываль, прысвечаны Бетховену (верасень).

Засн. ў 1 ст. рымлянамі. З 1286 горад. У 1273—1794 рэзідэнцыя кёльнскіх архіепіскапаў. У 1794 акупіраваны франц. войскамі, з 1814 у складзе Прусіі. У 1949—90 сталіца ФРГ. У 1969 да Б. далучаны суседнія гарады Бад-Годэсберг і Боель.

Стары горад моцна разбураны ў 1944—45. У пасляваенны час рэканструяваны, пабудаваны раён з урадавымі і адм. вышыннымі будынкамі. Помнікі архітэктуры: раманскі сабор Санкт-Касіус-унд-Фларэнцыус (1150—1224), гатычная царква св. Рэмігія (1274—1317), барочная царква Іезуітэнкірхе (1686—1717), палацы курфюрстаў (1697—1726, цяпер ун-т) і Попельсдорф (1715—56).

т. 3, с. 211

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЗ

(франц. gaz ад грэч. chaos хаос),

агрэгатны стан рэчыва, у якім слаба звязаныя малекулярнымі сіламі часціцы рухаюцца свабодна і пры адсутнасці знешніх палёў раўнамерна запаўняюць увесь дадзены ім аб’ём. Газ, у якім энергію ўзаемадзеяння паміж часціцамі можна не ўлічваць, наз. ідэальным газам. Яго стан апісваецца Клапейрона—Мендзялеева ўраўненнем.

Рэальныя газы пры звычайных умовах мала адрозніваюцца ад ідэальнага, а пры памяншэнні ціску і павышэнні т-ры па ўласцівасцях набліжаюцца да яго; часцей іх стан апісваецца Ван-дэр-Ваальса ўраўненнем. Пры паніжэнні т-ры газы дасягаюць крытычнага стану, пры далейшым ахаладжэнні і павышэнні ціску адбываецца звадкаванне газаў. Калі рух часціц падпарадкоўваецца законам класічнай механікі, газ наз. нявыраджаным (рэальныя газы), а калі квантавыя ўласцівасці часцінак газа пераважаюць — выраджаным (электронны газ у металах пры тэмпературах, блізкіх да 0 К). Пры нізкіх т-рах газы добрыя дыэлектрыкі, але пры пэўных умовах могуць праводзіць эл. ток (гл. Электрычныя разрады ў газах). Мех. ўласцівасці газаў вывучаюцца ў газавай дынаміцы і аэрадынаміцы. Газы складаюць асн. масу атмасферы, пашыраны ў зямной кары, маюць вял. значэнне ў існаванні жывых арганізмаў (гл., напр., Дыханне, Газаабмен) і біягеахімічным кругавароце рэчываў, газы прыродныя гаручыя — кашт. сыравіна для хім. і газавай прам-сці, крыніца забеспячэння разнастайных бытавых, тэхн. і інш. патрэб гаспадаркі.

А.І.Болсун.

т. 4, с. 423

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІПАТЭ́ТЫКА-ДЭДУКТЫ́ЎНЫ МЕ́ТАД,

метад навуковага пазнання і разважанняў, заснаваны на вывядзенні (дэдукцыі) заключэнняў з гіпотэз і інш. пасылак, сапраўднае значэнне якіх невядома. Выкарыстанне гіпатэтыка-дэдуктыўнага метаду звязана з шэрагам інш. метадалагічных аперацый: супастаўленнем фактаў, пераглядам існуючых паняццяў, утварэннем новых паняццяў, узгадненнем гіпотэз з інш. тэарэт. палажэннямі і г.д. Падобнага роду разважанні ўпершыню пачалі выкарыстоўваць у ант. філасофіі. У навук. пазнанні гэты метад атрымаў развіццё ў 17—18 ст. Ён выкарыстаны ў механіцы, у даследаваннях Г.Галілея. Тэорыя механікі І.Ньютана — гіпатэтыка-дэдуктыўная сістэма, пасылкамі якой служаць асн. законы руху. Паводле тыпу пасылак гіпатэтыка-дэдуктыўны метад падзяляецца на: разважанні, пасылкамі якіх з’яўляюцца гіпотэзы і эмпірычныя абагульненні; гіпатэтыка-дэдуктыўныя вывады, засн. на пасылках, што супярэчаць дакладна ўстаноўленым фактам ці тэарэт. прынцыпам; разважанні, пасылкамі якіх служаць сцвярджэнні, што супярэчаць прынятым думкам і перакананням. З лагічнага пункту погляду гіпатэтыка-дэдуктыўная сістэма ўяўляе сабой іерархію гіпотэз, ступень абстрактнасці і агульнасці якіх павялічваецца з аддаленнем ад эмпірычнага базісу. Гіпатэтыка-дэдуктыўны метад дае магчымасць даследаваць структуру і ўзаемасувязь не толькі паміж гіпотэзамі рознага ўзроўню, але і характар іх пацвярджэння эмпірычнымі дадзенымі. Разнавіднасцю гіпатэтыка-дэдуктыўнага метаду можна лічыць матэм. гіпотэзу, якая выкарыстоўваецца як эўрыстычны сродак для адкрыцця заканамернасцей у прыродазнаўстве.

Літ.:

Меркулов И.П. Гипотетико-дедуктивная модель и развитие научного знания. М., 1980;

Подкорытов Г.А. О природе научного метода. Л., 1988.

В.В.Краснова.

т. 5, с. 254

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЎТАМАТЫЗА́ЦЫЯ ВЫТВО́РЧАСЦІ,

ажыццяўленне вытв. працэсу з дапамогай аўтам. сродкаў без непасрэднага ўдзелу ў ім чалавека, а толькі пад яго кантролем. Засн. на выкарыстанні камп’ютэрных сістэм, прылад і аўтаматаў, якія дапоўнілі 3-звенную сістэму машын (рухавік, перадатачны механізм, рабочая машына) 4-м звяном — блокам аўтам. кіравання і кантролю. З’яўляецца асновай развіцця сучаснай эканомікі і гал. кірункам навукова-тэхнічнага прагрэсу. Ажыццяўляецца з мэтай павышэння эфектыўнасці вытв-сці, якасці прадукцыі і аптымальнага выкарыстання рэсурсаў. Бывае частковая (аўтаматызаваны ўчастак, цэх, прадпрыемства) і поўная (аўтаматызаваны ўсе працэсы, у тым ліку падрыхтоўка і рэгуляванне вытв-сці). Комплексныя і поўная аўтаматызацыя вытворчасці — гэта пераход да т.зв. бязлюдных тэхналогій. Неабходнасць аўтаматызацыі вытворчасці абумоўлена тэхнічна (калі пры выкананні аперацый выкарыстанне чалавечай працы на пэўным участку немагчыма), эканамічна (апраўдана толькі пры зніжэнні выдаткаў вытв-сці), сацыяльна (дыктуецца ростам прафес. гуманітарнага і культ. ўзроўню работніка, гарманічнага развіцця яго як асобы).

Аўтаматызацыя вытворчасці ажыццяўляецца ў 3 кірунках, якія адлюстроўваюць асн. этапы развіцця навукі і тэхнікі ў галіне механікі, электратэхнікі і электронікі. 1-ы кірунак ажыццяўляецца з перыяду прамысловага перавароту — вынаходства рабочых машын, здольных выконваць вытв. аперацыі без удзелу рабочага (ткацкія станкі, станкі апрацоўкі дэталяў па капіры і інш.). Дзеянне такіх машын-аўтаматаў грунтуецца на выкарыстанні дасягненняў класічнай механікі з дапамогай адпаведных канструкцыйных рашэнняў. Роля чалавека тут зводзіцца да назірання за работай машын ці да падачы матэрыялаў для іх перапрацоўкі і ўборкі гатовай прадукцыі. 2-і кірунак ажыццяўляецца з пач 20 ст. на базе выкарыстання электраэнергіі ў якасці рухальнай сілы. Вынаходства прылад, заснаваных на выкарыстанні электрычнасці і электрамагнетызму (рэле, кантактараў, прылад кантролю, рэгулявання і інш.) зрабіла магчымым звязаць у адзіную сістэму сукупнасць машын і механізмаў, якія вырашаюць пэўную тэхнал. задачу. На гэтым этапе пачаліся распрацоўка і шырокае выкарыстанне аўтам. ліній і вытв-сцяў, здольных без удзелу чалавека выконваць тэхнал. аперацыі па апрацоўцы дэталяў і нават зборку нескладаных вырабаў. Роля чалавека на такіх лініях — у падачы матэрыялаў, падборы і наладцы патрэбнага інструменту, кіраванні, кантролі, загрузцы і выгрузцы дэталяў. 3-і кірунак пачаўся з 2-й пал. 20 ст. на базе развіцця электронікі і выкарыстання ЭВМ (камп’ютэраў). Рэвалюцыйны скачок у вытв. працэсе адбыўся з выкарыстаннем аўтам. маніпулятараў (робатаў) і станкоў з лікавым праграмным кіраваннем, якія з дапамогай уманціраваных у іх камп’ютэраў здольныя самастойна запамінаць і абагульняць вопыт сваёй работы, выконваць і каардынаваць складаныя фіз. дзеянні ў прасторы. Гэта істотна мяняе характар і змест працы: аўтам. сістэма машын сама ўздзейнічае на прадмет працы, выконвае не толькі фіз., а і шэраг інтэлектуальных функцый рабочага.

Найб. пашырана аўтаматызацыя вытворчасці ў касманаўтыцы, металургіі, ядз. энергетыцы, радыёэлектроннай прам-сці, сувязі і інш. галінах эканомікі, у т. л. і нематэрыяльнай сферы. Дзейнічаюць аўтаматызаваныя прадпрыемствы, аўтаматычныя лініі, аўтаматычныя маніпулятары, аўтаматызаваныя сістэмы кіравання, класы аўтаматызаванага навучання, сістэмы па аўтаматызацыі вымярэнняў, аўтаматызацыі праграмавання, аўтаматызацыі праектавання і інш. На Беларусі наладжаны выпуск ЭВМ, аўтам. ліній і маніпулятараў, станкоў з лікавым праграмным кіраваннем і інш. сучасных сродкаў аўтаматызацыі, якія шырока выкарыстоўваюцца ў вытв-сці і пастаўляюцца на экспарт.

Літ.:

Автоматизация производственных процессов на основе промышленных роботов нового поколения: Сб. науч. тр. М., 1991.

М.С.Сачко.

т. 2, с. 114

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫЛІЧА́ЛЬНЫ ЦЭНТР,

арганізацыя (установа, прадпрыемства або іх падраздзяленне), прызначаная для збору, захавання, апрацоўкі і выдачы інфармацыі, распрацоўкі і даследавання матэм. забеспячэння ЭВМ і інш. Адрозніваюць вылічальныя цэнтры як навук.-даследчыя ўстановы (НДВЦ), вылічальныя цэнтры калектыўнага карыстання (ВЦКК) і як падраздзяленні арг-цый (устаноў, н.-д. ін-таў, прадпрыемстваў ці іх аб’яднанняў, мін-ваў і ведамстваў).

Гал. задачы НДВЦ: распрацоўка алгарытмаў рашэння задач і сродкаў праграмнага забеспячэння іх рашэння, а таксама методык па арганізацыі выліч. работ і новых тэхналогій праграмавання; кансультацыі карыстальнікаў па метадах рашэння, праграмных сродках і інш. ВЦКК забяспечаны найб. магутнай вылічальнай тэхнікай, злучанай каналамі сувязі з карыстальнікамі; маюць вял. набор сродкаў праграмнага забеспячэння, машыннай графікі, размножвання матэрыялаў і дакументаў і інш. Вылічальныя цэнтры, што з’яўляюцца падраздзяленнямі ўстаноў, вядуць на ЭВМ апрацоўку неабходнай інфармацыі, алгарытмаў і Праграм (у т. л. для патрэб кіравання тэхнал. працэсамі; гл. Вылічальная сістэма).

На Беларусі вылічальныя цэнтры ствараюцца з 1959 у Ін-це матэматыкі і вылічальнай тэхнікі АН, БДУ, рэсп. Дзяржплане і Цэнтр. стат. упраўленні, НДІ сродкаў аўтаматызацыі, з-дах электронных выліч. машын, трактарным, аўтам. ліній і інш. Асн. тэматыкай была распрацоўка метадаў рашэння навук.-тэхн. задач механікі, фізікі, эканомікі, уліку і кіравання. Вылічальныя цэнтры сталі асновай аўтаматызаваных сістэм кіравання тэхнал. працэсамі, прадпрыемствамі, галінамі вытв-сці і нар. гаспадаркі, аўтаматызаваных сістэм праектавання і канструявання і інш. Вылічальны цэнтр забяспечваецца сеткавымі камп’ютэрнымі і інфарм. тэхналогіямі, доступам да міжнар. сетак ЭВМ і вылічальных і інфарм. рэсурсаў буйных навук.-тэхн. цэнтраў.

М.П.Савік.

т. 4, с. 313

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕ́КТАРНАЕ ЗЛІЧЭ́ННЕ,

раздзел матэматыкі, у якім вывучаюцца дзеянні над вектарамі і іх уласцівасці. Яго развіццё ў 19 ст. выклікана патрэбамі механікі і фізікі. Пачалося з даследаванняў У.Гамільтана і Г.Грасмана па гіперкамплексных ліках. Падзяляецца на вектарную алгебру і вектарны аналіз.

Вектарная алгебра разглядае лінейныя дзеянні над вектарамі (складанне, адніманне вектараў, множанне вектараў на лік), а таксама скалярны здабытак, вектарны здабытак і змешаны здабытак вектараў. Сума a + b⃗ вектараў a і b⃗ — вектар, праведзены з пачатку a да канца b⃗, калі канец a і пачатак b⃗ супадаюць. Складанне вектараў мае ўласцівасці: a+b⃗=b⃗+a; (a+b⃗)+c⃗=a+(b⃗+c⃗); a+0⃗=a, a+(-a)=0⃗; дзе 0⃗ — нулявы вектар, -a — вектар, процілеглы вектару a (гл. Асацыятыўнасць, Камутатыўнасць). Рознасць a - b⃗ вектараў a і b⃗ — вектар x⃗ такі, што x⃗ + b⃗ = a; рознасць a - b⃗ ёсць вектар, які злучае канец вектара b⃗ з канцом вектара a, калі яны адкладзены з аднаго пункта. Здабыткам вектара a на лік α наз. вектар α a, модуль якога роўны | α || a| і які накіраваны аднолькава з вектарам a, калі α > 0, і процілеглы пры α < 0. Калі α = 0 ці a = 0⃗, то α a = 0⃗. Уласцівасці множання вектара на лік: α(a+b⃗)=αa⃗+αb⃗; (a+b⃗)α=aα+b⃗α; α(βa⃗)=(αβ)a; 1∙a=a. Пры каардынатным заданні вектараў розным дзеяннем над вектарамі адпавядаюць дзеянні над іх каардынатамі. У вектарным аналізе вывучаюцца вектарныя і скалярныя функцыі аднаго ці некалькіх аргументаў і дыферэнцыяльныя аперацыі над гэтымі функцыямі (гл., напр., Градыент, Дывергенцыя).

А.А.Гусак.

т. 4, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БАЛІ́СТЫКА , навука пра рух артыл. снарадаў, куляў, авіябомбаў, некіроўных ракет і інш. целаў. Грунтуецца на законах механікі, газадынамікі, тэрмадынамікі, тэорыі імавернасцяў і інш.

Узнікла пад уплывам прац італьян. вучонага Н.Тартальі (16 ст.), а таксама грунтоўных даследаванняў Г.Галілея, І.Ньютана, Л.Эйлера. Тэрмін балістыка прапанаваў франц. вучоны М.Мерсен (1644). Важкі ўклад у развіццё балістыкі зрабілі выхадзец з Беларусі К.Семяновіч, расійскія вучоныя М.В.Астраградскі, М.У.Маіеўскі, вучоныя б. СССР А.М.Крылоў, Д.А.Вентцэль, С.А.Хрысціяновіч і інш., а таксама вучоныя Дэ Сакр, П.Шарбанье (Францыя), Д.Біянкі (Італія) і інш.

Адрозніваюць унутраную і вонкавую балістыку. Унутраная балістыка вывучае рух снарадаў у канале ствала і заканамернасці працэсаў, што адбываюцца ў час выстралу (гарэнне пораху, газаўтварэнне пры яго згаранні і інш.). Выяўляе залежнасці змены ціску парахавых газаў, скорасці снарада і інш. параметраў на шляху снарада і ад часу яго руху па канале ствала. Уключае таксама балістычнае праектаванне зброі — вызначэнне канструкцыйных асаблівасцяў канала ствала, умоў зараджання, пры якіх снарад пэўнага калібру і масы атрымае пры вылеце зададзеную (дульную) скорасць. Вонкавая балістыка вывучае рух у прасторы снарадаў, куляў, некіроўных ракет і інш. пасля заканчэння сілавога ўзаемадзеяння іх са ствалом, пускавой устаноўкай, а таксама фактары, якія ўплываюць на гэты рух. Метадам вонкавай балістыкі карыстаюцца пры вывучэнні заканамернасцяў руху касм. апаратаў і кіроўных ракет, даныя балістыкі знаходзяць таксама практычнае выкарыстанне ў крыміналістыцы.

Літ.:

Серебряков М.Е. Внутренняя баллистика ствольных систем и пороховых ракет. 3 изд. М., 1962;

Дмитриевский А.А., Лысенко Л.Н., Богодистов С.С. Внешняя баллистика. 3 изд. М., 1991;

Иванов Н.М., Дмитриевский А.А., Лысенко Л.Н. Баллистика и навигация космических аппаратов. М., 1986.

т. 2, с. 254

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРААЭРАМЕХА́НІКА

(ад гідра... + аэрамеханіка),

раздзел механікі, які вывучае законы руху і раўнавагі вадкасцей і газаў, а таксама іх узаемадзеянне паміж сабой і з межавымі паверхнямі цвёрдых цел. Вадкасці і газы разглядаюцца як суцэльнае асяроддзе (без уліку малекулярнай будовы). Падзяляецца на тэарэт. і эксперыментальную; уключае гідрамеханіку, аэрамеханіку, газавую дынаміку, пытанні абгрунтавання эксперыментаў і выкарыстання іх вынікаў разглядаюцца ў падобнасці тэорыі і ў мадэліраванні. Вынікі даследаванняў па гідрааэрамеханіцы выкарыстоўваюцца ў ракетна-касм., авіяц. і інш. тэхніцы, пры буд-ве суднаў, турбін, гідратэхн. збудаванняў і інш.

Станаўленне гідрааэрамеханікі як навукі звязана з працамі Л.Эйлера (атрымаў ураўненні руху ідэальнай вадкасці і неразрыўнасці ўраўненне) і Д.Бернулі (устанавіў суадносіны паміж ціскам вадкасці і яе кінетычнай энергіяй; гл. Бернулі ўраўненне). У работах Ж.Лагранжа, А.Кашы, Т.Кірхгофа, Т.Гельмгольца, Дж.Стокса, М.Я.Жукоўскага, С.А.Чаплыгіна і інш. распрацаваны аналітычныя метады даследаванняў безвіхравых і віхравых цячэнняў ідэальнай вадкасці, руху цел у вадкасцях і газах і інш. Асн. дасягненне гідрааэрамеханікі 19 ст. — пераход да даследаванняў руху рэальнай (вязкай) вадкасці, які падпарадкоўваецца ўраўненням Наўе—Стокса; ням. вучоны Л.Прандтль распрацаваў тэорыю пагранічнага слоя (1904). Тэарэт. метады гідрааэрамеханікі грунтуюцца на дакладных (ці набліжаных) ураўненнях, што апісваюць цячэнне вадкасці (газу); выкарыстанне ЭВМ дазваляе рашаць складаныя сістэмы ўраўненняў з улікам многіх фактараў.

На Беларусі праблемы гідрааэрамеханікі распрацоўваюць у Ін-це цепла- і масаабмену, Ін-це фізікі АН Беларусі, БДУ, Бел. політэхн. акадэміі.

Літ.:

Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. 4 изд. М., 1988;

Прандтль Л. Гидроаэромеханика: Пер. с нем. М., 1949;

Седов Л.И. Механика сплошной среды. Т. 1—2. 4 изд. М., 1983—84.

Б.А.Калавандзін, В.А.Сасіновіч.

т. 5, с. 222

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯМЕХА́НІКА

(ад бія... + механіка),

1) раздзел біяфізікі, які вывучае мех. працэсы ў тканках, органах і арганізме, а таксама механізмы біял. рухомасці, у т. л. скарачэнне шкілетных мышцаў.

Першыя працы па біямеханіцы вядомы з 16 ст. (Леанарда да Вінчы). У 17 ст. з’явіліся спробы растлумачыць законамі механікі ўсе формы рухаў жывёл, у т. л. мышачныя скарачэнні і страваванне (італьян. вучоны Дж.Барэлі). У Расіі заснавальнікі біямеханікі — І.М.Сечанаў і П.Ф.Лесгафт (працы па класіфікацыі рухаў чалавека, структуры апорна-рухальнага апарату). Метады рэгістрацыі і аналізу прапанаваны М.А.Бернштэйнам (1941).

На Беларусі даследаванні вядуцца з 1950-х г. (А.Дз.Геўліч, Г.Ф.Палянскі, С.М.Уласенка). Распрацаваны асобныя пытанні біямеханікі рухальнага апарату, напр. залежнасць будовы і функцыі суставаў ад сілы вонкавых і ўнутр. уздзеянняў, біямеханіка дыхальнага апарату і інш. Гал. галіны прыкладнога выкарыстання дасягненняў біямеханікі: рацыяналізацыя працоўнай дзейнасці, спорт, ваенная і клінічная медыцына (асабліва траўматалогія і артапедыя), стварэнне аўтаматаў-маніпулятараў і робатаў, канструяванне заменнікаў органаў руху — біякіравальных пратэзаў і інш.

2) У тэатры — сістэма трэнажу акцёра. Уведзена У.Меерхольдам як эксперыментальны пед. метад для дасягнення акцёрам дасканалага, віртуознага валодання сваім целам, рухамі.

Меерхольд лічыў, што творчасць акцёра — творчасць пластычных формаў у прасторы, і таму ён павінен умець арганізаваць і дакладна выкарыстоўваць выразныя сродкі свайго цела. Дапаможныя прадметы да асн. курса біямеханікі — фізкультура, акрабатыка, танец, рытміка, бокс, фехтаванне. Як спец. прадмет выкладалася ў Бел. драм. студыі ў Маскве (1921—26). Элементы сістэмы біямеханікі ў працы з акцёрамі пры пастаноўцы спектакляў у т-рах Беларусі выкарыстоўвалі рэжысёры М.Кавязін, В.Фёдараў, Н.Лойтар, В.Пацехін і інш.

Літ.:

Александер Р. Биомеханика: Пер. с англ. М., 1970;

Бернштейн Н.А. Физиология движений и активность. М., 1990;

Обысов А.С. Надежность биологических тканей. М., 1971.

Г.К.Ільіч, А.В.Сабалеўскі.

т. 3, с. 175

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)