ВУГЛЯРО́ДЗІСТАЯ СТАЛЬ,

сталь, якая мае 0,04—2% вугляроду і інш. прымесныя элементы. Прысутнасць пастаянных прымесей (марганец, крэмній, сера, фосфар, кісларод, азот, вадарод) абумоўлена тэхнал. асаблівасцямі вытв-сці, выпадковых (хром, нікель, медзь і інш.) — наяўнасцю іх у рудзе. У залежнасці ад колькасці вугляроду вугляродзістую сталь падзяляюць на нізка- (0,05—0,25% С), сярэдне- (0,3—0,6% С) і высокавугляродзістую (0,7—1,3% С). Паводле якасці і галін выкарыстання адрозніваюць вугляродзістую сталь звычайнай якасці (агульнага прызначэння), высакаякасную канструкцыйную і інструментальную сталь.

т. 4, с. 286

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯГЕ́НЫ

[ад бія... + ...ген(ы)],

біягенныя рэчывы, 1) рэчывы і хім. элементы, якія ўваходзяць у састаў усіх відаў арганізмаў і неабходныя для іх існавання. Важнейшыя: кісларод (каля 70% масы арганізмаў), вуглярод (18%), вадарод (10%), азот, кальцый, калій, фосфар, магній, сера, хлор, натрый. У клетках выконваюць структурную функцыю, ролю каталізатараў біяхім. рэакцый, рэгулююць асматычныя працэсы, з’яўляюцца складанымі часткамі буферных сістэм і рэгулятарамі пранікальнасці біял. мембран.

2) Рэчывы, якія арганізмы сінтэзуюць у ходзе жыццядзейнасці.

3) Рэчывы, што ўтварыліся ў выніку раскладання рэшткаў арганізмаў, але не зусім мінералізаваліся.

т. 3, с. 168

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АМА́ЛЬДЗІ

(Amaldi) Эдаарда (н. 5.9.1908, каля г. П’ячэнца, Італія),

італьянскі фізік. Чл. Нац. акадэміі дэі Лінчэі ў Рыме (1948), замежны чл. АН СССР (1958). Скончыў Рымскі ун-т (1929). З 1945 прэзідэнт Нац. к-та па ядз. даследаваннях Італіі, з 1948 дырэктар Нац. ін-та ядз. фізікі. У 1957—60 прэзідэнт Міжнар. Саюза чыстай і прыкладной фізікі. Навук. працы па ядз. спектраскапіі, фізіцы элементарных часціц. У 1934 сумесна з Э.Фермі і інш. адкрыў з’яву запавольвання нейтронаў у рэчывах, якія маюць у сабе вадарод. Прадказаў існаванне антыпратона (1955), у сааўт. адкрыў анты-сігмаплюс-гіперон (1960).

т. 1, с. 304

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕ́РЦБЕРГ

(Herzberg) Герхард (н. 25.12.1904, г. Гамбург, Германія),

канадскі фізік і фізікахімік. Чл. Канадскага каралеўскага т-ва (з 1939). Скончыў Тэхн. ін-т у г. Дармштат (1927), дзе працаваў у 1930—35. У 1935 эмігрыраваў у Канаду. З 1949 у Нац. даследчым цэнтры ў г. Атава. Навук. працы па атамнай і малекулярнай спектраскапіі. Вызначыў энергію дысацыяцыі малекулы кіслароду (1930), знайшоў малекулярны вадарод у атмасферы планет. Ідэнтыфікаваў спектры малекул аксіду і дыаксіду вугляроду, аксіду азоту (II), ацэтылену, метану (1946—48), даследаваў спектры больш як 30 свабодных радыкалаў. Аўтар кнігі «Спектры і будова простых свабодных радыкалаў» (1974). Нобелеўская прэмія 1971.

т. 5, с. 201

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАДАРО́ДНАЯ СУ́ВЯЗЬ,

від трохцэнтравай хімічнай сувязі тыпу A—H​δ+... B​δ-, якая ўзнікае, калі атам вадароду H адначасова злучаны з двума электраадмоўнымі атамамі A і B. З атамам A (вуглярод, азот, кісларод, сера) вадарод злучаны моцнай кавалентнай сувяззю (A—H​δ+). З атамам B (фтор, кісларод, азот, радзей хлор, сера), які мае непадзельную пару электронаў, утварае дадатковую вадародную сувязь (абазначаецца кропкамі). Вадародная сувязь на парадак слабейшая за кавалентную сувязь.

Атамы A і B могуць належаць адной (унутрымалекулярная вадародная сувязь) і розным малекулам (міжмалекулярная вадародная сувязь). Выклікае асацыяцыю аднолькавых (вада, кіслоты, спірты) ці розных малекул у асацыяты і комплексы, уплывае на крышталізацыю, растварэнне, вызначае структуру бялкоў, нуклеінавых кіслот і інш. біялагічна важных злучэнняў.

І.В.Боднар.

т. 3, с. 434

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЗЫ НАФТАПЕРАПРАЦО́ЎКІ,

сумесі газаў, якія ўтвараюцца пры перапрацоўцы нафты на нафтаперапрацоўчых заводах. Састаў залежыць ад працэсу перапрацоўкі (перагонка, тэрмічны і каталітычны крэкінг, каксаванне, каталітычны рыформінг, гідракрэкінг).

Газы нафтаперапрацоўкі маюць насычаныя і ненасычаныя, у асн. нізкамалекулярныя вуглевадароды (малекулы з 1—4 атамамі вугляроду), а таксама вадарод, серавадарод і невялікую колькасць арган. злучэнняў серы. На ўстаноўках першаснай перагонкі атрымліваюць нязначную колькасць раствораных у нафце (1—1,2% ад масы нафты) газападобных вуглевадародаў. Газы крэкінгу і каксавання маюць даволі многа алкенаў (напр., газы каксавання прыкладна маюць у сабе этылену 5, прапілену 6, бутану 4, ізабутэну 1% па масе). Газ каталітычнага рыформінгу мае толькі насычаныя вуглевадароды і да 60% (па аб’ёме) вадароду. Выкарыстоўваюць як паліва і сыравіну для хім. прам-сці.

Я.І.Шчарбіна.

т. 4, с. 434

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЗАЎСТО́ЙЛІВАСЦЬ

(біял.),

здольнасць раслін, а таксама арганізмаў і іх згуртаванняў (часцей раслін) пераносіць вял. канцэнтрацыі шкодных газападобных рэчываў атмасферы (серавадарод, вокіслы вугляроду, серы, азоту, фтор, фторысты вадарод, хларыды і інш.). У выніку пранікнення газаў у раслінныя клеткі ў іх назапашваюцца ядавітыя рэчывы, якія парушаюць працэсы абмену рэчываў. Пры высокай газаўстойлівасці раслін адбываецца эфектыўнае ачышчэнне паветра ў прамысл. гарадах. Для гэтай мэты выкарыстоўваюць віды раслін, якія ўтвараюць вял. біямасу і маюць інтэнсіўны газаабмен: з травяністых — аўсяніцу, мятліцу, райграс, кавыль і інш., з дрэвавых і кустовых — лох серабрысты, вяз, клён серабрысты, брызгліну, бружмель і інш. На Беларусі даследаванні па падобры газаўстойлівых раслін для азелянення тэр. прамысл. прадпрыемстваў пачаліся ў 1970-я г. ў Цэнтр. бат. садзе АН. Для прамысл. і гарадскіх умоў рэкамендавана больш за 150 відаў і сартоў дрэвавакустовых і кветкава-дэкар. раслін, устойлівых да фітатаксікантаў.

Г.А.Семянюк.

т. 4, с. 430

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАГЕНІЗА́ЦЫЯ

(ад лац. hydrogenium вадарод),

гідрыраванне, хімічны працэс далучэння вадароду (пераважна малекулярнага) да розных рэчываў у прысутнасці каталізатара пры высокай т-ры і ціску. У якасці каталізатараў найчасцей выкарыстоўваюць металы VIII гр. перыяд. сістэмы (напр., нікель, кобальт, плаціну, паладый), аксіды металаў (напр., аксід хрому Cr2O3, алюмінію Al2O3) і інш.

Гідрагенізацыяй азоту ў прам-сці атрымліваюць аміяк, аксіду вугляроду — метылавы спірт. Практычнае значэнне мае гідрагенізацыя арган. злучэнняў з кратнымі сувязямі. Далучэнне вадароду па падвойных сувязях (С=С) ляжыць у аснове ператварэння вадкіх алеяў і тлушчаў у цвёрдыя прадукты (напр., пры вытв-сці маргарыну). Гідрагенізацыя — адна з асн. рэакцый многіх працэсаў нафтаперапрацоўкі (напр., каталітычнага рыформінгу, гідракрэкінгу). Гідрагенізацыя можа адбывацца адначасова з гідрагенолізам: разрывам сувязі С—Х (Х — вуглярод, азот, сера, кісларод) у малекуле арган. злучэння пад уздзеяннем вадароду (напр., пры атрыманні шмататамных спіртоў з поліцукрыдаў).

Я.Г.Міляшкевіч.

т. 5, с. 223

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВА́ДКАСНЫ РАКЕ́ТНЫ РУХАВІ́К,

ракетны рухавік, які працуе на вадкім паліве; асн. тып рухавікоў касм. апаратаў. Схему рухавіка распрацаваў К.Э.Цыялкоўскі (1903). Адрозніваюць асноўныя (для разгону ракеты) і дапаможныя (рулявыя, тармазныя і інш.). У залежнасці ад акісляльніку бываюць кіслародныя, азотнакіслотныя, фторныя і інш. Гаручае — газа, вадарод, аміяк і інш.

Складаецца з камеры згарання, рэактыўнага сапла, сістэм сілкавання, рэгулявання падачы і ўзгарання паліва і дапаможных агрэгатаў. Сістэма сілкавання палівам — выцясняльная (газабалонная) ці турбапомпавая. Гаручае і акісляльнік змешваюцца і ўзгараюцца ў камеры, адкуль газавы струмень праз сапло з вял. скорасцю выкідваецца ў навакольнае асяроддзе і стварае цягу. Асн. ахалоджванне камеры ажыццяўляецца цёкам гаручага па каналах у сценцы. У сучасных вадкасных ракетных рухавіках выкарыстоўваецца двухкампанентнае ракетнае паліва (складаецца з акісляльніку і гаручага, якія захоўваюцца ў асобных баках) і аднакампанентнае (вадкасць, здольная да каталітычнага раскладання). Выкарыстоўваюцца таксама ў балістычных ракетах далёкага дзеяння, зенітных кіроўных ракетах і інш.

Літ.:

Бычков В.Н., Назаров Г.А., Прищепа В.Н. Космические жидкостноракетные двигатели. М., 1976.

т. 3, с. 438

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРЫ́ДЫ,

хімічныя злучэнні вадароду з інш. элементамі. Простыя ці бінарныя гідрыды вядомыя для ўсіх элементаў, акрамя інертных газаў, плацінавых металаў (за выключэннем паладыю), серабра, золата, кадмію, ртуці, індыю, талію.

Гідрыды шчолачных і шчолачназямельных (акрамя магнію) металаў — солепадобныя іонныя злучэнні. Крышт. рэчывы, устойлівыя пры адсутнасці вільгаці (напр., гідрыды літыю LiH tпл 680 °C, кальцыю CaH2 tпл 815 °C). Пры ўзаемадзеянні з вадой утвараюць шчолачы і вадарод. Гідрыды пераходных металаў і рэдказямельных элементаў (металападобныя гідрыды) светла- ці цёмна-шэрыя крышт. рэчывы з метал. бляскам, устойлівыя на паветры пры пакаёвай т-ры (напр., гідрыды тытану TiH2 мае т-ру раскладання 600—700 °C). Гідрыды неметалаў — кавалентныя злучэнні, у асн. газападобныя рэчывы (высокатаксічныя, асабліва гідрыды мыш’яку AsH3 і фосфару PH3). Моцныя аднаўляльнікі, пры 100—300 °C раскладаюцца да элемента і вадароду. Бор і крэмній утвараюць вышэйшыя гідрыды: боравадароды і сіланы. Выкарыстоўваюць як аднаўляльнікі ў арган. сінтэзе і пры атрыманні металаў, як каталізатары, у вытв-сці паўправадніковых матэрыялаў (германію, крэмнію). Гл. таксама Алюмінію злучэнні, Літыю злучэнні.

т. 5, с. 240

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)