МА́ГНІЙ (лац. Magnesium),

Mg, хімічны элемент II групы перыяд. сістэмы, ат. н. 12, ат. м. 24,305, адносіцца да шчолачназямельных металаў. Прыродны складаецца з 3 стабільных ізатопаў ​24Mg (78,6%), ​25Mg (10,11%), ​26Mg (11,29%). У зямной кары 2,35% па масе. Трапляецца толькі ў выглядзе злучэнняў (гл. Магніевыя руды). Многа солей М. ў вадзе мораў і акіянаў, у прыродных расолах. Уваходзіць у састаў хларафілу. Адкрыты ў 1808 англ. хімікам Г.Дэві. Серабрыста-белы лёгкі метал, tпл 650 °C, шчыльн. 1740 кг/м​3. Хімічна вельмі актыўны, моцны аднаўляльнік. На паветры пакрываецца ахоўнай плёнкай магнію аксіду MgO, якая разбураецца пры награванні, пры т-ры ~600 °C згарае асляпляльна белым полымем з утварэннем MgO і нітрыду Mg3N2. Узаемадзейнічае з вылучэннем вадароду з кіпячай вадой і разбаўленымі к-тамі (пасівіруецца ў канцэнтраванай сернай і растворах плавікавай к-ты); пры награванні — з вадародам, галагенамі, борам, азотам, вугляродам, халькагенамі, крэмніем. Утварае шэраг магній-арганічных злучэнняў. У прам-сці атрымліваюць электролізам расплаву сумесі хларыду MgCl2 з хларыдам калію і натрыю. Выкарыстоўваюць у вытв-сці магніевых сплаваў, для легіравання алюмініевых сплаваў і металатэрмічнага атрымання металаў (тытану, урану, цырконію, ванадыю і інш.), у сінтэзе магнійарган. злучэнняў і піратэхніцы (сумесі парашку М. з акісляльнікамі). Гл. таксама Магнію злучэнні.

І.В.Боднар.

т. 9, с. 477

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАЛІБДЭ́Н (лац. Molybdaenum),

Mo, хімічны элемент VI групы перыяд. сістэмы, ат. н. 42, ат. м. 95,94. Прыродны М. складаецца з 7 стабільных ізатопаў з масавымі лікамі: 92, 94—98, 100; найб. пашыраны ​98Mo (23,75%). У зямной кары — 310​−4% па масе (гл. Малібдэнавыя руды). Адкрыты ў 1778 швед. хімікам К.Шэеле; назва ад грэч. molybdos — свінец (з-за падабенства мінералаў М. і свінцу).

Светла-шэры метал, tпл 2623 °C, шчыльн. 10 200 кг/м³. Устойлівы на паветры, пры награванні вышэй за 600 °C хутка акісляецца да трыаксіду MoO3 (бясколерныя з зялёным адценнем крышталі, з воднымі растворамі шчолачаў і аміяку ўтварае малібдаты). Пры пакаёвай т-ры не ўзаемадзейнічае з салянай і сернай к-тамі, раствараецца ў сумесі азотнай і сернай кіслот. Пры награванні ўзаемадзейнічае з галагенамі (акрамя ёду), парай серы (гл. Малібдэну дысульфіду); пры высокіх т-рах (1000—1500 °C) — з азотам, вугляродам, крэмніем (утварае дысіліцыд MoSi2 — цёмна-шэрыя крышталі, устойлівыя на паветры да 1500—1600 °C). Выкарыстоўваюць у асн. для легіравання сталей, а таксама для вытв-сці малібдэнавых сплаваў, як кампанент антыкаразійных сплаваў для хім. машынабудавання, для вырабу дэталей электралямпаў і электравакуумных прылад (напр., анодаў, катодаў, ніцей напальвання).

Літ.:

Зеликман АН. Молибден. М., 1970;

Популярная библиотека химических элементов. Кн. 1—2. 3 изд. М., 1983.

А.П.Чарнякова.

т. 10, с. 31

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАЛАГЕНІ́Я (ад металы + грэч. genos нараджэнне),

раздзел вучэння аб карысных выкапнях, які даследуе геал. і геахім. заканамернасці размяшчэння рудных радовішчаў у прасторы і часе. Тэрмін уведзены ў 1892 франц. геолагам Л. дэ Лане. Асн. задача М. — перспектыўная ацэнка руданоснасці геал. структур і эпох. М. падзяляецца на: эндагенную (даследуе радовішчы металічных руд, утварэнне якіх звязана з глыбіннымі працэсамі); экзагенную (радовішчы жалеза, нікелю, марганцу і інш., утвораныя ў паверхневых умовах пры выветрыванні горных парод і асадканамнажэнні ў водных басейнах); агульную (тэарэт. асновы і агульныя заканамернасці пашырэння рудных фармацый); рэгіянальную (руданосныя плошчы і рудныя радовішчы ў межах геал. рэгіёна, таксама адносна тэктанічных структур, тыпаў горных парод і інш.); спецыяльную (заканамернасці пашырэння ў часе і прасторы арудзянення аднаго металу, напр., берылію, жалеза ці комплексу металаў, напр., медна-нікелевых сульфідных руд).

Рудныя комплексы металаў пераважна прымеркаваны да асобных рэгіёнаў зямнога шара, якія наз. металагенічнымі правінцыямі, узнікненне іх абумоўлена геал. будовай і геал. гісторыяй гэтых тэрыторый. У геал. гісторыі Зямлі вылучаны металагенічныя эпохі — пэўныя перыяды часу назапашвання металаў на асобных участках зямной кары ў выглядзе радовішчаў. Рэзка адрозніваюцца ў металагенічных адносінах геасінкліналі, для якіх характэрны эпохі глыбіннага рудаўтварэння, і платформы, што з’яўляюцца абласцямі пашырэння рудных радовішчаў паверхневага генезісу. У выніку правядзення металагенічных даследаванняў складаюцца металагенічныя і прагнозныя карты.

Я.І.Аношка.

т. 10, с. 304

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МІНЕРА́ЛЬНЫ АБМЕ́Н,

сукупнасць працэсаў ужывання, усмоктвання, размеркавання і выдзялення неарганічных рэчываў з арганізма жывёл і чалавека. Разам з водным абменам М.а. забяспечвае пастаянства асматычнай канцэнтрацыі, іоннага складу, кіслотна-шчолачнай раўнавагі, аб’ёму вадкасцей унутр. асяроддзя арганізма (гл. Гамеастаз). Характар фіз.-хім. працэсаў у тканках вызначаюць іоны (Na​+, K​+, Ca​2+, Mg​2+, Cl​, SO42−, HCO3 і інш.) і мікраэлементы. Пазаклетачная вадкасць мае шмат Na​+, Ca​2+, Cl​, унутрыклетачная — K​+, Mg​2+, фасфаты. Іонная асіметрыя забяспечваецца дзейнасцю плазматычных мембран, звязваннем некат. іонаў хім. кампанентамі клетак, назапашваннем у органах (напр., у касцявой тканцы дэпаніруецца Ca​2+, Mg​2+, Sr​2+). У млекакормячых жывёл і чалавека солі выводзяцца праз кішэчнік і ныркі (экскрэцыя ўзмацняецца пры іх лішку і памяншаецца пры недахопе). Сутачная патрэба чалавека ў асобных хім. элементах залежыць ад узросту, полу, клімату, роду дзейнасці, рацыёну харчавання. Канцэнтрацыя асобных іонаў падтрымліваецца спец. сістэмамі рэгуляцыі (напр., Na​+ і K​+ — гармонамі кары наднырачнікаў, Ca​2+ — гармонамі шчытападобнай і каляшчытападобнай залоз) і каардынуецца ц. н. с. Парушэнне М.а. прыводзіць да паталаг. з’яў (напр., павышэнне канцэнтрацыі K​+ у плазме крыві парушае сардэчную дзейнасць, паніжэнне — выклікае мышачную слабасць, парушэнне функцый нырак і страўнікава-кішачнага тракту).

Літ.:

Гинецинский А.Г. Физиологические механизмы водно-солевого равновесия. М.; Л., 1963;

Кравчинский Б.Д. Физиология водно-солевого обмена жидкостей тела. Л., 1963.

С.С.Ермакова.

т. 10, с. 383

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЛІЙ (лац. Gallium),

Ga, хімічны элемент III групы перыядычнай сістэмы, ат. н. 31, ат. м. 69,72. Прыродны складаецца з 2 стабільных ізатопаў ​69Ga (61,2%) і ​71Ga (38,8%). У зямной кары 1,8·10​−3 % па масе. У прыродзе рассеяны (мінерал галіт CuGaS2 вельмі рэдкі), спадарожнік алюмінію. Адкрыты ў 1875 франц. хімікам П.Э.Лекокам дэ Буабадранам, названы ў гонар Францыі (лац. Gallia).

Светла-шэры легкаплаўкі (tпл 29,76 °C) метал з вял. тэмпературным інтэрвалам існавання ў вадкім стане (tкіп 2205 °C), шчыльн. (кг/м³) цвёрдага 5903,7 (29,6 °C), вадкага 6094,8 (пры зацвярдзенні аб’ём галію павялічваецца). У паветры пры звычайнай т-ры пакрыты ахоўнай плёнкай аксіду. Раствараецца ў мінер. к-тах і шчолачах, утварае адпаведна солі галію і галаты — солі ортагаліевай Ga(OH3) ці H3GaO3 і метагаліевай HGaO2 к-т. Найб. пашыраны солі галію: трыхларыд GaCl3, бясколерныя крышталі, tпл 77,8 °C; сульфат Ga2(SO4)3, які з сульфатамі шчолачных металаў і амонію ўтварае галын. Пры сплаўленні з фосфарам, мыш’яком і сурмой галій утварае крышт. паўправадніковыя злучэнні, адпаведна фасфід GaP (жоўта-аранжавы, tпл 1790 °C), арсенід GaAs (цёмна-шэры з фіялетавым адценнем, tпл 1238 °C), антыманід GaSb (светла-шэры, tпл 712 °C).

Выкарыстоўваюць у вытв-сці паўправадніковых матэрыялаў, для «халоднай пайкі» керамічных і металічных дэталей у радыёэлектроніцы, люстраў з высокай адбівальнай здольнасцю, высокатэмпературных (900—1600 °C) тэрмометраў, манометраў.

І.В.Боднар.

т. 4, с. 460

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БОР (лац. Borum),

B, хімічны элемент III групы перыяд. сістэмы Мендзялеева. Ат. н. 5, ат. м. 10,81. Прыродны бор складаецца з двух стабільных ізатопаў ​10B (19,57%) і ​11B (80,43%), існуе як мінерал буракс, керніт, ашарыт і інш.; у зямной кары ёсць 5·10​−3%, у вадзе акіянаў 4,6 мг/л. Атрыманы ў 1808 Л.Ж.Гей-Люсакам і Л.Ж.Тэнарам.

Вядома больш за 10 алатропных мадыфікацый бора. Бывае бясколерным, шэрым ці чырвоным крышталічным або цёмным аморфным рэчывам і мае розныя фіз.-хім. характарыстыкі. Па цвёрдасці (па Маосу 9,3, па Вікерсу 274,4 ГПа) займае другое (пасля алмазу) месца сярод рэчываў. Вельмі крохкі; у пластычны стан пераходзіць пры т-ры вышэй за 2000 °C. Хімічна дастаткова інертны, не рэагуе з вадародам (боравадароды атрымліваюцца ўскосным шляхам); з іншымі рэчывамі рэагуе толькі пры высокіх т-рах: акісляецца на паветры пры 700 °C, з азотам пры 1200—2000 °C утварае нітрыд бору, з вугляродам пры 1300 °C і вышэй — карбіды, з большасцю металаў — барыды, пры сплаўленні са шчолачамі — бараты; царская гарэлка і азотная кіслата акісляюць бор да борнай кіслаты (гл. таксама Бору злучэнні). Атрымліваюць з буры і керніту, аднаўленнем аксіду ці галагенідаў бору, раскладаннем галагенідаў і гідрыдаў. Выкарыстоўваюць як кампанент каразійнаўстойлівых гарачатрывалых сплаваў, кампазіцыйных матэрыялаў, сплаваў для рэгулявальных прыстасаванняў адз. рэактараў і лічыльнікаў нейтронаў, як паўправадніковы матэрыял і для барыравання.

Л.М.Скрыпнічэнка.

т. 3, с. 215

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЛЕ́БА,

паверхневы слой зямной кары, які развіўся ў выніку сумеснага ўздзеяння на горную (мацярынскую) пароду паветра, атм. ападкаў, сонечнага цяпла, жывых і адмерлых арганізмаў і мае прыродную ўрадлівасць; асн. сродак с.-г. вытв-сці.

Складаецца з генетычна звязаных глебавых гарызонтаў, якія адрозніваюцца саставам, будовай, структурай, колерам і інш. ўласцівасцямі; іх сукупнасць утварае глебавы профіль. Найб. значэнне мае верхні перагнойны або гумусавы гарызонт, на ворных землях ён дасягае 25—30 см. У глебе вылучаюць цвёрдую (гумус, першасныя і другасныя мінералы), вадкую (глебавы раствор), газападобную (глебавае паветра) часткі і жывыя арганізмы (глебавую фауну і флору). Глебы бываюць розных генетычных тыпаў, падтыпаў, родаў, відаў, разнавіднасцей. Паводле грануламетрычнага складу адрозніваюць пясчаныя глебы, супясчаныя глебы, сугліністыя глебы і гліністыя глебы, паводле колькасці вільгаці — нармальна ўвільготненыя (аўтаморфныя), часова і пастаянна пераўвільготненыя (паўгідраморфныя і гідраморфныя), якія патрабуюць асушэння. У залежнасці ад прыродных якасцей выбіраюць найб. эфектыўныя прыёмы іх паляпшэння. Глеба бесперапынна развіваецца і зменьваецца, у т. л. пад уплывам гасп. дзейнасці чалавека.

На тэр. Беларусі шмат тыпаў глебы, што розняцца паміж сабой будовай профілю, уласцівасцю і ўрадлівасцю, якую магчыма павялічыць пры дапамозе ўгнаенняў, апрацоўкі, рэгулявання воднага рэжыму і інш. Самыя пашыраныя тыпы: дзярнова-падзолістыя глебы, дзярнова-падзолістыя забалочаныя глебы (абодва найб. выкарыстоўваюцца ў с.-г. вытв-сці), таксама дзярновыя забалочаныя глебы, поймавыя глебы, тарфяна-балотныя глебы. Менш пашыраны бурыя лясныя глебы, дзярнова-карбанатныя глебы і падзолістыя глебы.

Н.М.Івахненка.

т. 5, с. 288

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЫШ’Я́К (лац. Arsenicum),

арсенік, As, хімічны элемент V групы перыяд. сістэмы, ат. н. 33, ат. м. 74,9216. У прыродзе адзін стабільны ізатоп ​75As. У зямной кары 1,7·10​−4% па масе. Трапляецца пераважна ў выглядзе мінералаў (гл. Мыш’яковыя руды). Як мікраэлемент ёсць у раслінных і жывёльных арганізмах (у арганізме чалавека 0,08—0,2 мг/кг). Злучэнні М. вядомыя з глыбокай старажытнасці; атрыманне метал. М. прыпісваюць Альберту Вялікаму (каля 1250). Лац. назва паходзіць ад грэч. arsin — моцны, рус. — магчыма, ад «мышь» (злучэнні М. яшчэ ў Стараж. Русі выкарыстоўвалі для знішчэння мышэй і пацукоў).

Вядома некалькі алатропных мадыфікацый М.; найб. устойлівая — метал. ці шэры М. (a = -As). Кампактны шэры М. мае выгляд серабрыстага буйнакрышт. металу, шчыльн. 5740 кг/м³, пры 615 °C узганяецца, плавіцца (tпл 817 °C) пры ціску пары 3,7 МПа. У вільготным паветры і пры награванні лёгка акісляецца. Узаемадзейнічае з канцэнтраванымі азотнай і сернай к-тамі, з галагенамі (утварае лятучыя трыгалагеніды AsHal3, а з фторам і пентафтарыд AsF5). Пры сплаўленні з металамі ўтварае арсеніды, са шчолачамі — арсін AsH3 і арсенаты (гл. таксама Мыш’яку злучэнні). Метал. М. атрымліваюць аднаўленнем сэсквіаксіду As2O3 вугалем, ачышчаюць сублімацыяй. Элементарны М. выкарыстоўваюць як дабаўку да сплаваў на аснове медзі, свінцу і волава, асабліва чысты — для сінтэзу і легіравання паўправадніковых матэрыялаў.

Літ.:

Популярная библиотека химических элементов. 3 изд. М., 1983. Кн. 1. С. 428.

т. 11, с. 55

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЕІНФЕКЦЫ́ЙНЫЯ ХВАРО́БЫ РАСЛІ́Н, непаразітарныя хваробы раслін,

парушэнні структуры і функцый раслін у выніку неспрыяльных фіз. і хім. уздзеянняў на іх (пераважна абіятычных і антрапагенных) без удзелу фітапатагенных арганізмаў. Вельмі пашыраны. Выклікаюцца празмерна нізкімі або высокімі вільготнасцю (завяданне раслін, усыханне; вымаканне пасеваў. растрэскванне і сыходжанне пладоў і інш.), т-рай (вымярзанне раслін; апёкі, запал, цераззерніца; пры рэзкіх ваганнях — выправанне пасеваў, іх выпіранне, маразабоіны, адлуп кары, драўніны і інш.), асвятленнем (этыяляцыя, апёкі і інш.), кіслотнасцю глебы, недахопам, лішкам або незбалансаванасцю элементаў мінеральнага жыўлення раслін (паляганне раслін, фасцыяцыя, плямістасці, ненармальная пігментацыя лісця і інш.), градам, моцным ветрам ці дажджом, маланкай і інш. (паляганне, апёкі і інш.), таксічнымі для раслін і радыеактыўнымі рэчывамі выхлапных газаў, прамысл. і інш. адходаў (пыл, сажа, аксіды азоту, вугляроду, серы, альдэгіды, злучэнні фтору, хлору, цяжкіх металаў, этылен і інш.) і пестыцыдамі (апёкі, пабурэнне, плямістасці і засыханне лісця, прамянёвая хвароба і інш.); таксінамі некат. раслін і глебавых грыбоў, мех. пашкоджаннямі жывёламі і чалавекам. Парушаюць рост, развіццё (прыгнечанне, дэфармацыі), фотасінтэз (хларозы раслін), часта прыводзяць да заўчаснага старэння і адмірання частак (некроз) ці цэлых раслін, павышаюць іх успрымальнасць да ўзбуджальнікаў інфекцыйных хвароб раслін, інш. патагенаў і шкоднікаў.

С.І.Бельская.

Неінфекцыйныя хваробы раслін: 1, 2 — азотнае і фосфарнае галаданне бульбы і кукурузы; 3 — калійнае галаданне бульбы (бронзавасць лісця); 4 — шкоднае дзеянне глебавай кіслотнасці на капусту; 5 — маразабоіны на ствале яблыні.

т. 11, с. 271

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАТЭРМА́ЛЬНАЯ ЭЛЕКТРАСТА́НЦЫЯ,

тып цеплавой электрастанцыі, якая пераўтварае глыбіннае цяпло Зямлі ў эл. энергію. Эканамічна выгадныя ў рэгіёнах з дастатковымі рэсурсамі тэрмальных вод (найб. высокія т-ры падземных вод у вулканічных раёнах, дзе яны выходзяць на паверхню ў выглядзе перагрэтай пары). У геатэрмальнай электрастанцыі выкарыстоўваюцца прамая (пара паступае прама ў турбіну), непрамая (з папярэдняй ачысткай пары ад агрэсіўных газаў) і змешаная тэхнал. схемы атрымання электраэнергіі. Перавагі геатэрмальнай электрастанцыі перад традыцыйнымі ЦЭС — адсутнасць кацельні, палівападачы, меншы сабекошт атрыманай энергіі.

Глыбіннае цяпло ўтвараецца ў выніку радыеактыўнага распаду, хім. рэакцый і інш. працэсаў, што адбываюцца ў зямной кары (гл. Геатэрмія). Т-ра падземных вод і горных парод павялічваецца на 1 °C пры паглыбленні на 33 м (гл. Геатэрмічная ступень) і на глыб. 5 км складае каля 160 °C. Геатэрмальныя электрастанцыі працуюць у ЗША, Італіі, Японіі, Новай Зеландыі, Ісландыі. У СССР першая геатэрмальная электрастанцыя магутнасцю 5 МВт пушчана ў 1966 на поўдні Камчаткі, да 1980 яе магутнасць даведзена да 11 МВт. На Беларусі перспектыўныя на ўтрыманне тэрмальных вод раёны Прыпяцкай упадзіны, але практычнае іх выкарыстанне праблематычна. Як магчымая можа разглядацца сістэма «гарачыя скальныя пароды» (ГСП), пры якой на глыбіню да 4 км у свідравіну трэшчынаватых парод напампоўваецца вада, што ад кантакту пад ціскам з ГСП набывае т-ру да 180 °C і больш. Яна выходзіць праз іншую свідравіну і пераўтвараецца ў тэхнал. пару.

Літ.:

Драгун В.Л., Конев С.В. В мире тепла. Мн., 1991;

Выморков Б.М. Геотермальные электростанции. М., Л., 1966.

У.Л.Драгун.

т. 5, с. 123

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)