нявызначаны інтэграл

т. 11, с. 405

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

няўласны інтэграл

т. 11, с. 421

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

Рымана інтэграл

т. 13, с. 508

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

Фур’е інтэграл

т. 16, с. 504

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПАВЕ́РХНЕВЫ ІНТЭГРА́Л,

інтэграл ад функцыі, зададзенай на якой-н. паверхні. Выкарыстоўваюцца пры рашэнні фіз. задач.

Да П.і. зводзіцца, напр., задача вылічэння масы, размеркаванай па зададзенай паверхні з пераменнай паверхневай шчыльнасцю (П.і. 1-га роду), што вядзе да вылічэння двайных інтэгралаў (гл. Кратны інтэграл). Некаторыя задачы фізікі, напр., задача вызначэння патоку вадкасці праз зададзеную паверхню, зводзяцца да вылічэння П.і., дзе паверхня мяркуецца арыентаванай (мае зададзены дадатны напрамак нармалі да яе). Такія інтэгралы наз. П.і. 2-га роду і звязаны з трайнымі інтэграламі па аб’ёме, які абмежаваны зададзенай паверхняй (гл. Астраградскага формула), а таксама з крывалінейнымі інтэграламі ўздоўж замкнутага контура, які абмяжоўвае зададзеную паверхню (гл. Стокса формула).

т. 11, с. 465

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫ́ЗНАЧАНЫ ІНТЭГРА́Л,

канечны ліміт інтэгральнай сумы функцыі 𝑓(x) на адрэзку [a, b]; адно з асн. паняццяў матэм. аналізу. Абазначаецца a b 𝑓(x) dx .

Геаметрычна вызначаны інтэграл выражае плошчу «крывалінейнай трапецыі», абмежаванай адрэзкам [a, b] восі Ox, графікам функцыі 𝑓(x) і ардынатамі пунктаў графіка, якія маюць абсцысы a і b.

Паводле вызначэння вызначаны інтэграл a b 𝑓(x) dx = lim λ 0 k 1 n 𝑓′(xk′)Δxk , дзе Δxk = xk xk1 — даўжыні элементарных адрэзкаў, якія атрымліваюцца ў выніку падзелу адрэзка [a, b] на n элементарных адрэзкаў пунктамі a = x0 < x1 < x2 < ... < xn = b (k = 1,2,...,n) ; λ — даўжыня найбольшага адрэзка Δxk; xk — некаторы пункт адрэзка [xk1, xk]. Асн. сродак вылічэння вызначанага інтэграла — формула Ньютана—Лейбніца a b 𝑓(x) dx = F(b) F(a) , дзе F(x) — любая першаісная для 𝑓(x), г.зн. F′(b) = 𝑓(x) .

Вызначаны інтэграл мае разнастайныя дастасаванні ў матэматыцы, фізіцы, механіцы, біялогіі, тэхніцы. З яго дапамогай вылічаюць плошчы крывалінейных фігур, паверхняў, даўжыні дуг крывых ліній, аб’ёмы цел, каардынаты цэнтра цяжару, моманты інерцыі, шлях цела, работу і інш.

А.А.Гусак.

т. 4, с. 308

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСТРАГРА́ДСКАГА ФО́РМУЛА,

звязвае інтэграл па некаторым аб’ёме з інтэгралам па замкнёнай паверхні, што абмяжоўвае гэты аб’ём. У вектарнай форме мае выгляд: (V) div a   dV = (S) a dS , дзе a = a(M) — вектарнае поле, зададзенае ў кожным пункце M аб’ёму V, diva — дывергенцыя a, (S) a dS — паток a праз замкнёную паверхню S. Прапанавана М.В.Астраградскім (1828—31) і пашырана на n-мерную прастору (1834—38).

т. 2, с. 49

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЯЛЯ́ЦКІ (Мікалай Пятровіч) (н. 27.9.1950, в. 1-я Слабодка Петрыкаўскага р-на Гомельскай вобл.),

бел. вучоны-эканаміст. Д-р эканам. н. (1990), праф. (1993). Скончыў Мінскі радыётэхн. Ін-т (1972). Працаваў у ВА «Інтэграл», з 1980 — у Мінскім радыётэхн. ін-це, з 1993 — у Бел. дзярж. эканам. ун-це. Асн. кірунак навук. дзейнасці — кадравы менеджмент, прадпрымальніцкі стыль кіравання, дзелавое замежнае партнёрства, ацэнка персаналу кіравання.

Тв.:

Кадровый потенциал организаторов производства. Мн., 1990.

т. 3, с. 406

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДАНЖУА́ ((Denjoy) Арно) (5.1.1884, г. Ош, Францыя —27.1.1974),

французскі матэматык. Чл. Парыжскай АН (1942; з 1962 прэзідэнт). Замежны чл. АН СССР (1971). Скончыў Вышэйшую нармальную школу ў Парыжы (1902). Працаваў у розных ун-тах Еўропы. З 1955 ганаровы праф. Парыжскага ф-та навук. Навук. працы па тэорыі функцый, дыферэнцыяльных ураўненнях, тэорыі меры. Даў поўнае рашэнне класічнай задачы пра прымітыўную функцыю, для якога ўвёў новае паняцце інтэграла (інтэграл Д.). Залаты медаль імя М.В.Ламаносава АН СССР (1971).

т. 6, с. 38

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЬЮ́ТАНА—ЛЕ́ЙБНІЦА ФО́РМУЛА,

асноўная формула інтэгральнага злічэння. Выражае сувязь паміж вызначаным інтэгралам ад функцыі 𝑓(x), зададзенай на адрэзку [a, b], і якой-н. яе першаіснай (гл. Нявызначаны інтэграл): a b 𝑓(x) dx = F(b) F(a) . Правіла, выражанае Н.—Л.ф., было вядома І.Ньютану і Г.В.Лейбніцу (адсюль назва). Калі функцыя 𝑓(x) неперарыўная на [a, b], то для любога x з [a, b] можна таксама запісаць F(x) = a x 𝑓(t) dt + C , дзе C — некаторая пастаянная.

т. 11, с. 398

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)