Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІПЕРЗАРА́Д,
характарыстыка элементарных часціц, роўная падвоенаму сярэдняму эл. зараду часціцы ў ізатапічным мультыплеце (гл. Ізатапічная інварыянтнасць). Адрозніваюць моцны і слабы гіперзарад.
Моцны гіперзарад вызначаецца алг. сумай усіх унутраных квантавых лікаў часціцы і выкарыстоўваецца для апісання прыблізнай ізатапічнай інварыянтнасці адронаў. У розных рэакцыях элементарных часціц моцны гіперзарад амаль што захоўваецца, парушэнні яго захавання звязаны з уплывам электрамагнітнага ўзаемадзеяння. Слабы гіперзарад вызначае інтэнсіўнасць электраслабага ўзаемадзеяння элементарных ферміёнаў з нейтральным прамежкавым базонам і з’яўляецца крыніцай поля гэтага базона. Значэнні слабага гіперзарада, атрыманыя эксперыментальна, пакуль што не паддаюцца тлумачэнню. Напр., левыя нейтрына і электрон маюць слабы гіперзарад, роўны -1/2, правы электрон -1, левыя u- і d-кваркі + 1/6, правыя u- і (d-кваркі -2/3 і -1/3 адпаведна (гл. Кваркі).
І.С.Сацункевіч.
т. 5, с. 256
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВАДАРОДАПАДО́БНЫЯ А́ТАМЫ,
1) іоны лёгкіх элементаў, якія, як вадарод, маюць ядро і адзін электрон. Напр., аднаразова іанізаваны атам гелію He+, двойчы іанізаваны атам літыю Li2+ і да т.п.
2) Нестабільныя часціцы, т.зв. новыя атамы. Напр., мезаатамы, якія маюць ядро атама вадароду (пратон) і адмоўна зараджаную элементарную часціцу (μ--мезон, π--мезон і інш.).
т. 3, с. 434
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БО́РА РА́ДЫУС,
радыус найбліжэйшай да ядра (пратона) арбіты электрона ў мадэлі атама вадароду Н.Бора. Абазначаецца
м, дзе
, h — Планка пастаянная, m і e — маса і зарад электрона. У квантавай механіцы Бора радыус вызначаецца як адлегласць ад ядра, на якой з найбольшай імавернасцю можна выявіць электрон у няўзбуджаным атаме вадароду. Гл. таксама Бора тэорыя.
т. 3, с. 215
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АНТЫЧАСЦІ́ЦА,
адна з аднолькавых па масе, часе жыцця, значэннях спіна і цотнасці элементарных часціц, якія маюць роўныя па модулі, але процілеглыя па знаку квантавыя лікі (зарады). Напр., электрон (e-) і пазітрон (e+) адрозніваюцца знакам эл. і лептоннага зарадаў і спіральнасці (палярызацыі); нейтрон (n) і антынейтрон (n̄) — барыённага зараду і магн. моманту. У адпаведнасці з квантава-рэлятывісцкай прыродай элементарных часціц кожнай з іх адпавядае свая антычасціца, акрамя сапраўды нейтральных (не маюць ніякіх зарадаў) фатона, π0-мезона, ρ0-мезона, η0-мезона і j/ψ-часціцы. Характэрная асаблівасць пары часціца — антычасціца — здольнасць да анігіляцыі. Кожнаму працэсу эл.-магн. і моцнага ўзаемадзеянняў адпавядае аналагічны працэс, у якім усе часціцы заменены антычасціцамі, і наадварот. Эксперыментальна даказана існаванне антычасціц для ўсіх вядомых часціц. Зарэгістраваны найпрасцейшыя пасля антыпратона антыядры (антыдэйтрон, антытытрытый, антргелій). Прынцыпова магчыма існаванне антыатамаў, антымалекул і наогул антырэчыва з антыпратонамі, антынейтронамі і пазітронамі.
А.А.Богуш.
т. 1, с. 404
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БО́РА ТЭО́РЫЯ,
першая тэорыя атама і яго спектраў. Прапанавана Н.Борам у 1913 як аб’яднанне ідэі М.Планка аб квантаванні энергіі і планетарнай мадэлі атама Э.Рэзерфарда. Грунтуецца на двух пастулатах. Атамы могуць доўга знаходзіцца, не выпраменьваючы святла, ва ўстойлівых (стацыянарных) станах, адпаведных пэўным дыскрэтным (перарыўным) значэнням энергіі E1, E2, E3... (1-ы пастулат Бора). Выпрамяненне ці паглынанне святла адбываецца пры скачкападобных пераходах з аднаго стану ў другі паводле формулы , дзе hν — энергія святла частаты ν, што выпрамяняецца ці паглынаецца, h — Планка пастаянная (2-і пастулат Бора, ці ўмова частот).
Пастулаты Бора пацверджаны эксперыментальна і выконваюцца для ўсіх мікрасістэм (атамных ядраў, атамаў, малекул і інш.). Каб знайсці магчымыя значэнні энергіі і інш. характарыстыкі стацыянарных станаў атама, Бор разглядаў рух электронаў вакол ядра паводле законаў механікі Ньютана (класічнай механікі), пры дапаўняльных, т.зв. квантавых, умовах. Пры гэтым электрон у найпрасцейшым выпадку атама вадароду можа рухацца вакол ядра па кругавых ці эліптычных арбітах пэўных памераў, якія павялічваюцца з павелічэннем энергіі атама ў адпаведных стацыянарных станах. Канкрэтныя мадэльныя ўяўленні пра рух электрона ў атаме па строга вызначаных арбітах заменены ўяўленнямі квантавай механікі.
Літ.:
Ельяшевич М.А. Развитие Нильсом Бором квантовой теории атома и принципа соответствия // Успехи физ. наук. 1985. Т. 147, вып. 2.
М.А.Ельяшэвіч.
т. 3, с. 215
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВАДАРО́Д,
гідраген (лац. Hydrogenium), H, хімічны элемент VII групы перыяд. сістэмы, ат. н. 1, ат. м. 1,00794. Прыродны вадарод складаецца з 2 ізатопаў 1H (протый, 99,98% па масе) і 2H ці Д (дэйтэрый, 0,02%), атрыманы штучныя радыеактыўныя 3H ці Т (трытый) і вельмі няўстойлівы 4H. У паветры колькасць вадароду 3,5·10-6% па масе, у літасферы і гідрасферы — 1%, у вадзе — 11,19%, у складзе арганічных злучэнняў вадароду маюць усе раслінныя і жывёльныя арганізмы. Самы пашыраны элемент у космасе, складае каля палавіны масы Сонца, большасці зорак. Газ без колеру і паху, tпл -259,1 °C, tкіп -252,6 °C, шчыльн. вадкага 70,8 кг/м³ (-235 °C). Вадарод і яго сумесі з паветрам і кіслародам (гл. Грымучы газ) пажара- і выбухованебяспечныя.
Малекула вадароду двухатамная. Пры звычайных умовах узаемадзейнічае толькі з фторам і хлорам (на святле), пры павышаных т-рах у прысутнасці каталізатараў — з кіслародам (гл. Вада), галагенамі (гл. Галагенавадароды), азотам (гл. Аміяк). Са шчолачнымі і шчолачназямельнымі металамі, элементамі III—IV груп перыяд. сістэмы ўтварае гідрыды. Аднаўляе аксіды і галагеніды металаў да металаў, ненасычаныя вуглевадароды (гл. Гідрагенізацыя). Лёгка аддае электрон, у водных растворах пратон H+ існуе ў выглядзе іона гідраксонію, утварае вадародную сувязь. У прам-сці атрымліваюць канверсіяй метану: CH4 + 2H2O = 4H2 + CO2; пры газіфікацыі вадкага і цвёрдага паліва (гл. Вадзяны газ).
Газападобны вадарод выкарыстоўваюць для сінтэзу аміяку, хлорыстага вадароду, метылавага і вышэйшых спіртоў, вуглевадародаў, для гідрагенізацыі тлушчу, таксама для зваркі і рэзкі металаў вадародна-кіслародным полымем, вадкі — як гаручае ў ракетнай і касм. тэхніцы, ізатопы — у атамнай энергетыцы.
І.В.Боднар.
т. 3, с. 434
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
А́ТАМНЫЯ СПЕ́КТРЫ,
спектры, якія ўзнікаюць пры выпрамяненні і паглынанні фатонаў свабоднымі ці слаба ўзаемадзейнымі атамамі (атамнымі газамі, парай невял. шчыльнасці). Лінейчастыя, складаюцца з асобных спектральных ліній, кожная з якіх адпавядае пераходу электрона паміж двума адпаведнымі ўзроўнямі энергіі атама.
Спектральныя лініі характарызуюцца пэўнымі значэннямі частаты ваганняў святла ν, хвалевага ліку ν/c і даўжыні хвалі , дзе c — скорасць святла ў вакууме. Для найбольш простых атамных спектраў, якімі з’яўляюцца спектры атама вадароду і вадародападобных іонаў, месцазнаходжанне спектральных ліній вызначаецца па формуле:
, дзе En — энергія ўзроўню, h — Планка пастаянная, R — Рыдберга пастаянная, Z — атамны нумар, n — галоўны квантавы лік. Спектральныя лініі аб’ядноўваюцца ў спектральныя серыі, адна з якіх (пры , ) наз. серыяй Бальмера; адкрыццё яе ў 1885 дало пачатак выяўленню заканамернасцяў у атамных спектрах. Спектры атамаў шчолачных металаў, якія маюць адзін знешні электрон, падобны да спектра атама вадароду, але зрушаны ў бок меншых частот, колькасць спектральных серый павялічана, заканамернасці ў спектрах апісваюцца больш складанымі формуламі. Атамы, у якіх дабудоўваюцца dw- і f-абалонкі (гл. ў арт. Перыядычная сістэма элементаў Мендзялеева), маюць найб. складаныя спектры (многа соцень і тысяч ліній).
Тэорыя атамных спектраў заснавана на характарыстыцы электронаў у атаме квантавымі лікамі n і 1 і дазваляе вызначыць магчымыя ўзроўні энергіі. Вывучаны спектры вял. колькасці нейтральных і іанізаваных атамаў, расшчапленне спектральных ліній атамаў у магнітным (Зеемана з’ява) і ў электрычным (Штарка з’ява) палях. З дапамогай атамных спектраў вызначаецца састаў рэчыва (спектральны аналіз).
Літ.:
Ельяшевич М.А. Атомная и молекулярная спектроскоп я. М., 1962;
Фриш С.Э. Оптические спектры атомов М.; Л., 1963;
Собельман И.И. Введение в теорию атомных спектров. М., 1977.
М.А.Ельяшэвіч.
т. 2, с. 68
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
А́ТАМНАЯ ФІ́ЗІКА,
раздзел фізікі, прысвечаны вывучэнню будовы і ўласцівасцяў атамаў, а таксама элементарных працэсаў, у якіх яны ўдзельнічаюць. У шырокім сэнсе атамная фізіка (субатамная фізіка) — фізіка мікраскапічных з’яў, якім характэрна перарыўнасць рэчыва і электрамагнітнага выпрамянення і якія падпарадкоўваюцца квантавым законам (гл. Элементарныя часціцы, Атам, Малекула, Фатон).
Гіпотэза, што матэрыя складаецца з атамаў як найменшых непадзельных і нязменных часціц, узнікла ў Стараж. Грэцыі ў 5—33 ст. да нашай эры. Дасканалыя ўяўленні пра атамістычную будову рэчыва склаліся значна пазней. У сярэдзіне 19 ст. дакладна вызначаны паняцці малекулы і атама. У канцы 19 ст. адкрыты электрон, рэнтгенаўскія прамяні і радыеактыўнасць, што дало магчымасць устанавіць складаную будову атама. Сучасную ядз. мадэль атама прапанаваў Э.Рэзерфард у 1911. Гэта мадэль і квантавыя ўяўленні М.Планка, А.Эйнштэйна і інш. далі магчымасць Н.Бору ў 1913 стварыць першую квантавую тэорыю атама і яго спектраў (гл. Бора тэорыя). У 1923 Л. дэ Бройль выказаў ідэю пра хвалевыя ўласцівасці часціц рэчыва, што было пацверджана эксперыментальна ў доследах па дыфракцыі электронаў у 1927 (гл. Дыфракцыя часціц).
Тэарэтычныя асновы атамнай фізікі закладзены ў 1925—28 працамі В.Гайзенберга, Э.Шродынгера, М.Борна, П.Дзірака і інш., у выніку чаго ўзніклі квантавая механіка і квантавая электрадынаміка. На гэтай аснове дадзена тлумачэнне вял. колькасці мікраскапічных з’яў і прадказаны шэраг эфектаў на атамна-малекулярным узроўні (гл. Атамныя спектры, Вымушанае выпрамяненне, Зонная тэорыя, Фотаэфект). Для апісання ўласцівасцяў элементарных часціц і іх узаемадзеянняў створана квантавая тэорыя поля. Развіццё атамнай фізікі прывяло да карэннага перагляду асн. уяўленняў і паняццяў фізікі мікраскапічных з’яў і ўзнікнення новых галін ведаў і тэхн. дастасаванняў, напрыклад квантавай электронікі, мікраэлектронікі, фізікі цвёрдага цела. На Беларусі даследаванні па атамнай фізіцы і сумежных навуках праводзяцца з канца 1950-х г. у ін-тах фіз. і фізіка-тэхн. профілю АН, БДУ, Бел. політэхн. акадэміі і інш.
Літ.:
Зубов В.П. Развитие атомистических представлений до начала XIX века. М. 1965;
Хунд Ф. История квантовой физики Киев, 1980;
Джеммер М. Эволюция понятий квантовой механики: Пер. с англ. М. 1985;
Ельяшевич М.А. Развитие Нильсом Бором квантовой теории атома и принципа соответствия // Успехи физ. наук. 1985. Т. 147, вып. 2.
М.А.Ельяшэвіч.
т. 2, с. 67
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)