Тангенс 4/588; 10/224, 304, 305 (іл.)

Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)

тангенс

т. 15, с. 417

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДАТЫ́ЧНАЯ ПРАМА́Я да крывой лініі,

лімітнае становішча адпаведнай сякучай.

Няхай М0 — зафіксаваны пункт крывой l, М — іншы яе пункт. М0М — сякучая (прамая, праведзеная праз гэтыя пункты). Калі пры неабмежаваным набліжэнні М да М0 сякучая М0М імкнецца да пэўнай прамой М0Т, то прамая М0Т наз. Д.п. да крывой l у пункце М0. У выпадку плоскай крывой, вызначанай у дэкартавых каардынатах ураўненнем y=f(x), дзе f(x) — дыферэнцавальная функцыя, ураўненне Д.п. да яе ў пункце М0(x0, y0) мае выгляд y−y0=f′(x0) (x−x0), дзе f′(x) —вытворная функцыя f′(x) у пункце x0. Д.п. ўтварае з дадатным напрамкам восі OX вугал, тангенс якога роўны f′(x). Д.п. мае не кожная неперарыўная крывая, паколькі прамая M0M можа і не імкнуцца да лімітнага становішча або можа імкнуцца да двух розных лімітных становішчаў, калі М імкнецца да M0 з розных бакоў ад M0.

А.А.Гусак.

Да арт. Датычная прамая: 1 — М0Т — датычная прамая да крывой L1 у пункце М0; 2 — крывая L2 не мае датычнай прамой у пункце M0.

т. 6, с. 62

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗНА́КІ МАТЭМАТЫ́ЧНЫЯ,

умоўныя абазначэнні (сімвалы), якімі карыстаюцца для запісу матэм. паняццяў, суадносін, выкладак і ніш. Напр., выраз «лік тры большы за лік два» з дапамогай З.м. запісваецца як 3 > 2.

Развіццё матэм. сімволікі цесна звязана з агульным развіццём паняццяў і метадаў матэматыкі. Першымі З.м. былі лічбы — знакі для абазначэння лікаў; мяркуюць, што яны папярэднічалі ўзнікненню пісьменнасці. З.м. для абазначэння адвольных велічынь з’явіліся 5—4 ст. да н.э. ў Грэцыі. Напр., плошчы, аб’ёмы, вуглы адлюстроўваліся адрэзкамі, а здабыткі велічынь — прамавугольнікамі, пабудаванымі на такіх адрэзках. У «Асновах» Эўкліда (3 ст. да н.э.) велічыні абазначаюцца дзвюма літарамі — пачатковай і канцавой літарамі адпаведнага адрэзка, а часам і адной. Пачаткі літарнага абазначэння і злічэння ўзніклі ў познаэліністычную эпоху (Дыяфант; верагодна 3 ст.) пры вызваленні алгебры ад геам. формы. Сучасная алг. сімволіка створана ў 14—17 ст.; яе развіццё і ўдасканаленне спрыяла ўзнікненню новых раздзелаў матэматыкі (гл. напр., Аперацыйнае злічэнне, Варыяцыйнае злічэнне, Тэнзарнае злічэнне) і матэм. логікі (Алгебра логікі).

А.А.Гусак.

Асноўныя матэматычныя знакі
Знак Значэнне Кім і калі ўведзены
Знакі індывідуальных аперацый адносін, аб’ектаў
+ складанне Я.Відман, 1489
адніманне
× множанне У.Оўтрэд, 1631
множанне Г.Лейбніц, 1698
: дзяленне Г.Лейбніц, 1684
an ступень Р.Дэкарт, 1637
na корань (радыкал) А.Жырар, 1629
log лагарыфм Б.Кавальеры, 1632
sin, cos сінус, косінус Л.Эйлер, 1748
tg тангенс Л.Эйлер, 1753
dx, d​2x, ... дыферэнцыял Г.Лейбніц, 1675
y   dxy інтэграл
lim ліміт У.Гамільтан, 1853
= роўнасць Р.Рэкард, 1557
>< больш, менш Т.Гарыёт, 1631
паралельнасць У.Оўгрэд, 1677
бесканечнасць Дж.Валіс, 1655
e аснова натуральных лагарыфмаў Л.Эйлер, 1736
π адносіны даўжыні акружнасці да яе дыяметра
i уяўная адзінка −1 Л.Эйлер, 1777
i, j, k адзінкавыя вектары У.Гамільтан, 1853
f(x) Знакі пераменных аперацый і аб’ектаў функцыя Л.Эйлер, 1734
x, y, z невядомыя (пераменныя) Р.Дэкарт, 1637
a, b, c адвольныя пастаянныя
r вектар А.Кашы, 1853

т. 7, с. 99

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)