АНТРАЦЭ́Н,

араматычны вуглевадарод C14H10. Мал. м. 178,24. Жоўтыя крышталі з блакітнай флуарэсцэнцыяй, tпл 216 °C; растваральны ў спірце, эфіры, ацэтоне, нерастваральны ў вадзе. У высакачыстым стане — паўправаднік. Уступае ў рэакцыі далучэння з дыенафіламі, галагенамі, кіслародам, шчолачнымі металамі і інш. Атрымліваюць з каменнавугальнай смалы. Выкарыстоўваюць для вытв-сці антрахінонавых фарбавальнікаў, монакрышталі — для сцынтыляцыйных лічыльнікаў. Антрацэн раздражняе скуру і слізістыя абалонкі дыхальных шляхоў і вачэй.

т. 1, с. 393

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКУСТАЭЛЕКТРЫ́ЧНЫ ЭФЕ́КТ,

узнікненне пастаяннага току ці электрарухальнай сілы ў праводным асяроддзі (метал, паўправаднік) пад уздзеяннем бягучай ультрагукавой (УГ) хвалі. Адкрыты Г.Вайнрахам і Х.Дж.Уайтам (ЗША, 1957) у монакрышталях германію. Паяўленне эл. току звязана з перадачай імпульсу (і адпаведна энергіі) ад гукавой хвалі электронам праводнасці. Пад уздзеяннем УГ хвалі ў правадніку ўзнікаюць лакальныя эл. палі, якія распаўсюджваюцца разам з хваляй і захопліваюць носьбіты зараду, што прыводзіць да ўзнікнення акустаэл. току. Акустычны эфект адносіцца да нелінейных эфектаў (гл. Нелінейная акустыка). Выкарыстоўваецца для вымярэння магутнасці УГ сігналу, частотных характарыстык УГ пераўтваральнікаў, для даследавання эл. уласцівасцяў паўправаднікоў.

У.М.Белы.

т. 1, с. 218

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕРМА́НІЙ

(лац. Germanium),

Ge, хімічны элемент IV групы перыядычнай сістэмы, ат. н. 32, ат. м. 72,59. Прыродны складаецца з 5 стабільных ізатопаў, найб. колькасць ​74Ge (36,54%). У зямной кары 1,5·10​-4% па масе. Належыць да рассеяных элементаў. Адкрыты ў 1886 К.А.Вінклерам, названы ім у гонар яго радзімы (Германія).

Цвёрдае крохкае рэчыва серабрыстага колеру з метал. бляскам, tпл 938,25 °C, шчыльн. 5323 кг/м³ (25 °C), шчыльн. вадкага 5557 кг/м³ (1000 °C). Паўправаднік, шырыня забароненай зоны 0,66 эВ. Пры звычайных умовах устойлівы да ўздзеяння вады, кіслароду, разбаўленых к-т. Узаемадзейнічае з азотнай к-той, царскай гарэлкай, растворамі шчолачаў у прысутнасці акісляльніку (утварае солі германаты, пры награванні — з большасцю неметалаў. У паветры пры 700 °C акісляецца да германію дыаксіду. Пры сплаўленні з металамі ўтварае германіды — крохкія цвёрдыя рэчывы з метал. бляскам (напр., германід цырконію Zi5Ge3, tпл 2330 °C). Атрымліваюць з пабочных прадуктаў пры перапрацоўцы руд каляровых металаў, з попелу некаторых відаў вугалю, адходаў коксахім. вытв-сці. Выкарыстоўваюць у паўправадніковай тэхніцы для вырабу дыёдаў, транзістараў, тэрма- і фотарэзістараў; як кампанент сплаваў, матэрыял для лінзаў у прыладах інфрачырвонай тэхнікі і дэтэктараў іанізавальнага выпрамянення.

І.В.Боднар.

т. 5, с. 177

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЯЛІ́КАЯ ІНТЭГРА́ЛЬНАЯ СХЕ́МА,

інтэгральная схема з вялікай колькасцю схемных элементаў (высокай ступені інтэграцыі); асн. элементная база ЭВМ і радыёэлектронных сродкаў. Аналагавыя вялікія інтэгральныя схемы маюць да 800, лічбавыя — да некалькіх дзесяткаў тысяч элементаў. Звышвялікая інтэгральная схема мае на парадак большую ступень інтэграцыі. Вялікія інтэгральныя схемы забяспечваюць надзейнасць радыёэлектроннай тэхнікі, яе малыя габарыты і масу, нізкую спажываную магутнасць.

Асаблівасць вялікіх інтэгральных схем — малыя памеры яе элементаў і міжэлементных злучэнняў (да 1,2 мкм пры выкарыстанні фоталітаграфіі і менш за 1 мкм пры рэнтгенаўскай і электроннай літаграфіі); скарачэнне колькасці знешніх вывадаў для забеспячэння хуткадзеяння, напр. у аднакрышталёвых ЭВМ. Адрозніваюць вялікія інтэгральныя схемы цвердацельныя (маналітныя; бываюць на аснове структур метал-дыэлектрык-паўправаднік і біпалярных структур) і гібрыдныя (дыскрэтныя бяскорпусныя паўправадніковыя прыборы і інтэгральныя схемы размешчаны на плёначнай падложцы; маюць больш шырокі частотны дыяпазон у параўнанні з маналітнымі; недахопы — меншая шчыльнасць упакоўкі элементаў, меншая надзейнасць). Праектаванне і тэхнал. рэалізацыя вялікіх інтэгральных схем ажыццяўляюцца пры дапамозе ЭВМ.

Вялікія інтэгральныя схемы выкарыстоўваюцца як запамінальныя прыстасаванні, аналага-лічбавыя і лічбавыя пераўтваральнікі, узмацняльнікі, у мікрапрацэсарных камплектах і інш. На Беларусі навук. распрацоўкі і вытворчасць вялікіх інтэгральных схем і звышвялікіх інтэгральных схем ажыццяўляюцца ў навук.-вытв. аб’яднаннях «Інтэграл», «Карал», канцэрне «Планар», Бел. ун-це інфарматыкі і радыёэлектронікі, Мінскім н.-д. прыладабудаўнічым ін-це, НДІ радыёматэрыялаў і інш.

Літ.:

Технология СБИС: Пер. с англ. Кн. 1—2. М., 1986;

Гурский Л.И., Степанец В.Я. Проектирование микросхем. Мн., 1991.

В.У.Баранаў, А.П.Дастанка.

т. 4, с. 380

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)