ГО́ЛЬДБАХА ПРАБЛЕ́МА,

праблема тэорыі лікаў, паводле якой кожны цотны лік, большы за 4, можна запісаць у выглядзе сумы двух простых лікаў (бінарная Гольдбаха праблема), а няцотны лік, большы за 5, — у выглядзе сумы трох простых лікаў (тэрнарная Гольдбаха праблема). Выказана акад. Пецярбургскай АН К.Гольдбахам (1742). У 1930 Л.Г.Шнірэльман даказаў тэарэму, што любы цэлы лік ёсць сума абмежаванай колькасці простых лікаў. Тэрнарную Гольдбаха праблему даказаў у 1937 І.М.Вінаградаў; бінарная Гольдбаха праблема не даказана.

В.І.Бернік.

т. 5, с. 328

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЛГЕБРАІ́ЧНАЕ ЎРАЎНЕ́ННЕ,

ураўненне выгляду P(x, y,...,z)=0, дзе P(x, y,...,z) — мнагасклад n-ай ступені (n≥0) ад адной або некалькіх пераменных. Калі пераменная адна, то лік а, які ператварае алгебраічнае ўраўненне ў тоеснасць, наз. коранем ураўнення і мнагасклад дзеліцца на (x-a) без рэшты (тэарэма Безу). У алгебраічна замкнёным полі (гл. Алгебраічны лік) кожны мнагасклад P(x) ступені n мае роўна n каранёў (у т. л. кратных). Н.Абель паказаў (1824), што пры n≥5 карані некаторых ураўненняў P(x)=0 нельга запісаць праз радыкалы.

В.І.Бернік.

т. 1, с. 234

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДВАЙКО́ВАЯ СІСТЭ́МА ЛІЧЭ́ННЯ,

пазіцыйная сістэма лічэння з асновай 2. Мае толькі 2 знакі — лічбы 0 i 1. Лік 2 лічыцца адзінкай 2-га разраду і запісваецца ў выглядзе 10 (чытаецца: «адзін—нуль»), лік 4—3-га разраду і запісваецца як 100 і г.д. Кожная адзінка наступнага разраду ўдвая большая за папярэднюю. Каб лік, запісаны ў дзесятковай сістэме лічэння, запісаць у Д.сл., яго выражаюць праз ступені ліку 2, напр., 4510 = 1∙2​5 + 0∙2​4 + 1∙2​3 + 1∙2​2 + 0∙2​1 + 1∙2​0 = 1011012. Выкарыстоўваецца ў тэарэт. пытаннях і для апрацоўкі інфармацыі на лічбавых ЭВМ (уваходныя і выхадныя даныя прадстаўляюць у дзесятковай сістэме лічэння).

У Д.с.л. найб. проста выконваюцца ўсе арыфм. дзеянні, напр., табліца множання зводзіцца да роўнасці 11 = 1. Аднак гэта сістэма нязручная з-за грувасткага запісу лікаў, напр., лік 9000 у Д.с.л. будзе 14-разрадным. Каб скараціць даўжыню запісаў праграм для ЭВМ, кожныя 3 ці 4 двайковыя лічбы замяняюць адным сімвалам (з алфавіта 0, 1, ..., 7 або 0, 1, ..., 9, A B, C, D, E, F адпаведна) і атрымліваюць запіс у васьмярковай ці шаснаццатковай сістэме лічэння. Гл. таксама Лічэнне.

М.П.Савік.

т. 6, с. 73

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗВЫЧА́ЙНЫЯ ДЫФЕРЭНЦЫЯ́ЛЬНЫЯ ЎРАЎНЕ́ННІ,

ураўненні адносна функцыі адной пераменнай, якая ўваходзіць у гэта ўраўненне разам са сваімі вытворнымі да некаторага парадку ўключна. Найбольшы парадак вытворнай наз. парадкам ураўнення.

Калі З.д.ў. запісана ў форме x (n) = 𝑓 (t, x, x′, ..., x(n1)) , то кажуць, што гэта ўраўненне n-га парадку ў нармальнай форме. Згодна з тэарэмай існавання і адзінасці ў такога ўраўнення існуе і прычым толькі адно рашэнне з пачатковымі ўмовамі x(t0) = x 1 0 , x′(t0) = x 2 0 ..., x(n1)(t0) = x n 0 , дзе t0, x10, x20, ..., xn0 — адвольны пункт вобласці D R 1 + n у якой 𝑓(t, x, ..., xn) — функцыя, неперарыўная разам са сваімі вытворнымі 𝑓x1, 𝑓x2, ..., 𝑓xn. Гэта азначае, што пачатковыя ўмовы цалкам вызначаюць усё мінулае і будучае той рэальнай сістэмы, якая апісваецца гэтым ураўненнем. Пры дапамозе З.д.ў. або іх сістэм мадэлююць дэтэрмінаваныя рэальныя сістэмы (працэсы). Пры гэтым стан сістэмы ў кожны момант часу t павінен апісвацца канечным мноствам параметраў x1, ..., xn. Тады, каб запісаць такаю мадэль, дастаткова ў мностве станаў сістэмы, якую мадэлююць, задаць скорасці пераходу ад аднаго стану сістэмы да яе наступнага стану.

Літ.:

Еругин Н.П. Книга для чтения по общему курсу дифференииальных уравнений. 3 изд. Мн., 1979;

Петровский И.Г. Лекции по теории обыкновенных дифференциальных уравнений. 7 изд. М., 1984.

У.Л.Міроненка.

т. 7, с. 41

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПТЫ́ЧНЫ ДЫСК,

носьбіт інфармацыі ў выглядзе дыска, прызначаны для высакаякаснага запісу і ўзнаўлення гуку, відарыса, тэксту і інш. з дапамогай лазернага выпрамянення. Аснова аптычнага дыска — празрысты матэрыял (шкло, пластмаса і інш.), на які наносіцца рабочы слой, дзе пры лічбавым аптычным запісе ўтвараюцца мікраскапічныя паглыбленні (піты), што ў сукупнасці складаюць кальцавыя або спіральныя дарожкі. У параўнанні з традыц. спосабамі запісу і ўзнаўлення інфармацыі (мех., магн.) аптычныя дыскі маюць больш высокую шчыльнасць запісу (да 10​8 9> біт/см²), большую даўгавечнасць носьбіта з-за адсутнасці мех. кантакту паміж ім і счытвальным прыстасаваннем, меншы час доступу да інфармацыі (да 0,1 с).

Рабочы слой аптычнага дыска для аднаразовага запісу і шматразовага ўзнаўлення — лёгкаплаўкая плёнка таўшч. да 0,03 мкм. Пад уздзеяннем лазернага выпрамянення ў працэсе запісу адбываецца лакальнае расплаўленне або выпарэнне рабочага слоя. З такіх дыскаў з больш тоўстай плёнкай (да 0,15 мкм) робяць метал. матрыцу для стварэння дыскаў-копій (уласна аптычны дыск) метадам прасавання або ліцця пад ціскам. Напр., на дыск дыяметрам 356 мм можна запісаць ТВ-праграму працягласцю да 2 гадз. або стварыць пастаянную вонкавую памяць для ЭВМ аб’ёмам да 4 Гбайт, лічбавыя аптычныя грампласцінкі дыяметрам 120 мм (кампакт-дыскі) маюць працягласць гучання да 1 гадз. Кампакт-дыскі для пастаяннай вонкавай памяці ЭВМ змяшчаюць да 500 Мбайт інфармацыі. У рэверсіўных аптычных дысках, дзе шматразова (да 10​7 цыклаў) ажыццяўляецца запіс — узнаўленне — сціранне інфармацыі, рабочы слой з паўправадніковых або магнітааптычных матэрыялаў. Маюць дыяметр да 305 мм, аб’ём памяці да 2 Гбайт. Могуць замяняць стацыянарныя накапляльнікі ЭВМ вінчэстэрскага тыпу.

т. 1, с. 438

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫЛІЧА́ЛЬНАЯ МАТЭМА́ТЫКА,

раздзел матэматыкі, у якім распрацоўваюцца і даследуюцца метады лікавага рашэння матэм. задач. Метады вылічальнай матэматыкі прыбліжаныя, падзяляюцца на аналітычныя (даюць прыбліжаныя рашэнні ў выглядзе аналітычнага выразу) і лікавыя (у выглядзе табліцы лікаў).

Узнікненне вылічальнай матэматыкі звязана з неабходнасцю рашэння асобных задач (вымярэнне адлегласцей, плошчаў, аб’ёмаў і інш.). Развіццё навукі, асабліва астраноміі і механікі, спрыяла развіццю матэматыкі ўвогуле і вылічальнай матэматыкі ў прыватнасці. Складаліся табліцы эмпірычна знойдзеных залежнасцей, што прывяло да ўзнікнення паняцця функцыі і задачы інтэрпалявання (гл. Інтэрпаляцыя). Поспехі вылічальнай матэматыкі звязаны з імёнамі І.Ньютана, Л.Эйлера, М.І.Лабачэўскага, К.Ф.Гаўса, П.Л.Чабышова, С.А.Чаплыгіна, А.М.Крылова, А.М.Ціханава, А.А.Самарскага, У.І.Крылова, Л.В.Кантаровіча і інш. Многія задачы вылічальнай матэматыкі можна запісаць у выглядзе y=Ax, дзе x і y належаць зададзеным мноствам X і Y, A — некаторы аператар. Для рашэння задачы трэба знайсці у па зададзеным х ці наадварот. У вылічальнай матэматыцы гэта задача рашаецца заменай мностваў X, Y і аператара A (ці толькі некаторых з іх) іншымі, зручнымі для вылічэнняў. Замена робіцца так, каб рашэнне новай задачы y=Bx было ў нейкім сэнсе блізкім да рашэння першапачатковай задачы. Напр., калі ў якасці Ax узяць інтэграл a b x(t) dt , то прыбліжанае значэнне яго ў многіх выпадках можна вылічыць паводле т.зв. квадратурнай формулы a b x(t) dt k 1 n Ak x (tk) , дзе Ak і tk — некаторыя фіксаваныя лікі. Гэта адна з класічных задач вылічальнай матэматыкі. Пры рашэнні яе, асабліва ў выпадку кратнага (шматразовага) і кантынуальнага інтэгравання, карыстаюцца Монтэ-Карла метадам. Прынцыповае значэнне ў вылічальнай матэматыцы належыць тэорыі прыбліжэння функцый, якая адыгрывае і агульнаматэм. ролю. Адна з характэрных задач прыбліжэння функцый — задача інтэрпалявання, г.зн. пабудова для зададзенай функцыі 𝑓(t) прыбліжанай функцыі 𝑓n(t), якая супадае з 𝑓(t) у фіксаваных вузлах t1, t2, ..., tn. У тэорыі прыбліжэння функцый сапраўднага (а пазней і камплекснага) пераменнага распрацоўваліся метады прыбліжэння функцый аднаго класа функцыямі інш. класаў, а таксама вывучаліся пытанні збежнасці і ацэнак прыбліжэнняў. Найб. пашыраныя задачы вылічальнай матэматыкі — задачы алгебры [рашэнне сістэм лінейных алгебраічных ураўненняў, вылічэнне вызначнікаў (дэтэрмінантаў) і адваротных матрыц, знаходжанне ўласных вектараў і ўласных значэнняў матрыц, вызначэнне каранёў мнагачленаў]. У задачы прыбліжанага рашэння сістэмы лінейных ураўненняў Ax=b, дзе A — квадратная матрыца, x і b — вектары-калонкі, часта выкарыстоўваюцца ітэрацыйныя метады. Многія ітэрацыйныя метады рашэння гэтай сістэмы маюць выгляд xk = xk1 + Bk ( b Axk1 ) , дзе Bk ( k = 1, 2, ... ) — некаторая паслядоўнасць матрыц, x° — пачатковае прыбліжэнне, часам адвольнае. Розны выбар матрыц Bk дае розныя ітэрацыйныя працэсы. Значную частку вылічальнай матэматыкі складаюць прыбліжаныя і лікавыя метады рашэння звычайных дыферэнцыяльных ураўненняў, дыферэнцыяльных ураўненняў у частковых вытворных, інтэгральных ураўненняў, інтэгра-дыферэнцыяльных ураўненняў, вылічальныя метады варыяцыйнага злічэння, аптымальнага кіравання, задач стахастычнага аналізу і інш. З’яўленне вылічальных машын значна расшырыла кола задач і стымулявала далейшую распрацоўку метадаў вылічальнай матэматыкі з улікам магчымасцей вылічальных машын, у прыватнасці распрацоўкі спец. алгарытмаў, арыентаваных на паралельную рэалізацыю.

На Беларусі даследаванні па ўсіх асн. кірунках вылічальнай матэматыкі і падрыхтоўкі навук. кадраў пачаліся з 1950-х г. у АН і БДУ пад кіраўніцтвам акад. У.І.Крылова; асобныя пытанні вылічальнай матэматыкі распрацоўваліся і раней.

Літ.:

Березин И.С., Жидков Н.П. Методы вычислений. Т. 1. 3 изд. М., 1966;

Т. 2. 2 изд. М., 1962;

Канторович Л.В., Крылов В.И. Приближенные методы высшего анализа. 5 изд. М.; Л., 1962;

Крылов В.И. Приближенное вычисление интегралов. 2 изд. М., 1967;

Крылов В.И., Скобля Н.С. Справочная книга по численному обращению преобразования Лапласа. Мн., 1968;

Турецкий А.Х. Теория интерполирования в задачах. Мн., 1968;

Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. 2 изд. М.; Л., 1963;

Янович Л.А. Приближенное вычисление континуальных интегралов по гауссовым мерам. Мн., 1976.

Л.А.Яновіч.

т. 4, с. 311

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)