некарэктныя задачы

т. 11, с. 278

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

карэ́ктныя і некарэ́ктныя зада́чы

т. 8, с. 121

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПТЫМІЗА́ЦЫІ ЗАДА́ЧЫ I МЕ́ТАДЫ,

раздзел матэматыкі, у якім вывучаюцца ўласцівасці розных класаў задач, што грунтуюцца на выбары сярод некаторага мноства найлепшага з дазволеных рашэнняў (аптымізацыйныя задачы). Кожная задача ўключае фармальнае апісанне мноства рашэнняў і крытэрыяў аптымальнасці. У залежнасці ад інфармаванасці асобы, што прымае рашэнне, задачы бываюць дэтэрмінаваныя (адзіны інфарм. стан), нявызначаныя (мноства інфарм. станаў; звычайна разглядаюцца ў гульняў тэорыі) і стахастычныя (кожны з мноства інфарм. станаў мае пэўную імавернасць); у залежнасці ад уласцівасцяў мноства рашэнняў і крытэрыяў аптымальнасці выбару — аднакрытэрыяльныя (патрабаванні мінімізацыі або максімізацыі адной мэтавай функцыі) і многакрытэрыяльныя (некалькіх мэтавых функцый). Могуць быць зададзены і спецыфічныя суадносіны перавагі адных рашэнняў перад інш. магчымымі. Матэм. асновай распрацоўкі лікавых метадаў аптымізацыі з’яўляюцца матэм. аналіз, лінейная алгебра, тэорыя імавернасцяў і інш. Для рашэнняў аптымізацыйных задач распрацаваны шэраг пакетаў праграм.

Літ.:

Габасов Р., Кириллова Ф.М. Методы оптимизации. 2 изд. Мн., 1981;

Васильев Ф.П. Численные методы решения экстремальных задач. 2 изд. М., 1988;

Карманов В.Г. Математическое программирование. 3 изд. М., 1986.

В.С.Танаеў.

т. 1, с. 436

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

патэнцыял,

рэсурсы для вырашэння задачы і дасягнення мэты.

т. 12, с. 186

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

статут,

дакумент, які вызначае задачы, правілы і кола дзейнасці прадпрыемства.

т. 15, с. 170

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПЕРА́ЦЫЙ ДАСЛЕ́ДАВАННЕ,

метад распрацоўкі колькасна абгрунтаваных рэкамендацый па прыняцці аптымальных рашэнняў па арганізацыі і кіраванні дзеяннямі (аперацыямі). Навукова аформілася для рашэння тэхн., тэхніка-эканам. задач і задач кіравання ў канцы 1940-х г.

У кожнай задачы аперацый даследавання фармальна апісана мноства магчымых рашэнняў і вызначанай мэтавай функцыі, значэнні якой характарызуюць меру дасягнення мэты пры кожным магчымым рашэнні. Задачы аперацый даследавання бываюць статычныя і дынамічныя, дэтэрмінаваныя і стахастычныя. У статычных задачах мэтавая функцыя яўна не залежыць ад часу, у дынамічных — час мае істотнае значэнне, у дэтэрмінаваных — выбар канкрэтнага рашэння прыводзіць да пэўнага значэння мэтавай функцыі, у стахастычных — гал. ролю адыгрывае фактар выпадковасці. Пры рашэнні статычных дэтэрмінаваных задач карыстаюцца метадамі лінейнага і нелінейнага праграмавання, дынамічных дэтэрмінаваных — дынамічнага праграмавання, стахастычных — тэорыі імавернасцяў, матэм. статыстыкі, тэорыі масавага абслугоўвання, стат. тэорыі прыняцця рашэнняў. Задачы, у якіх сутыкаюцца інтарэсы двух і больш бакоў, рашаюцца метадамі тэорыі гульняў. Калі дакладнае рашэнне задачы немагчыма, карыстаюцца метадам стат. выпрабаванняў (гл. Монтэ-Карла метад). Для рашэння складаных задач распрацаваны пакеты праграм для ЭВМ. Гл. таксама Аптымізацыі задачы і метады.

М.А.Лепяшынскі.

т. 1, с. 424

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ХАЎ Фёдар Дзмітрыевіч

(19.2.1906, г. Чэркеск, Расія — 30.3.1980),

бел. матэматык. Акад. АН Беларусі (1966), д-р фіз.-матэм. н., праф. (1943). Скончыў Казанскі ун-т (1930). З 1953 у Растоўскім ун-це. У 1961—76 у БДУ. Навук. працы па краявых задачах аналітычных функцый і сінгулярных інтэгральных ураўненнях. Даў закончанае рашэнне асн. краявой задачы аналітычных функцый, т.зв. задачы Рымана.

Тв.:

Краевые задачи. [3 изд.) М., 1977;

Уравнения типа свертки. М., 1978 (разам з Ю.І.Чэрскім).

Літ.:

Ф.Д.Гахов // Успехи математических наук. 1976. Т. 31, вып. 4.

т. 5, с. 95

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРА́ФАЎ ТЭО́РЫЯ,

раздзел матэматыкі, які вывучае аб’екты на аснове геаметрычнага падыходу. Асн. паняцце графаў тэорыі — граф: мноства пунктаў (вяршынь) і мноства сувязей (рэбраў, дуг), што злучаюць некаторыя (або ўсе) пары вяршынь. Напр., сетка чыгунак, аўтамаб. (або інш.) дарог з пазначэннем на дугах адлегласцей паміж населенымі пунктамі або іх прапускных здольнасцей. Выкарыстоўваецца ў тэорыі перадачы інфармацыі, тэорыі трансп. сетак, камп’ютэрнай графіцы, аўтаматызацыі праектавання і інш.

Першыя задачы графаў тэорыі былі звязаны з рашэннем галаваломак і матэм. забаўляльных задач (напр., задачы аб Кёнігсбергскіх мастах, аб расстаноўцы ферзей на шахматнай дошцы, аб перавозках, кругасветным падарожжы, задача 4 фарбаў і інш.). Адным з першых вынікаў у графаў тэорыі быў крытэрый існавання абходу графа без паўтораў рэбраў (Л.Эйлер, 1736). У 19 ст. з’явіліся работы, у якіх пры рашэнні практычных задач атрыманы важныя вынікі ў графаў тэорыі (задачы пабудавання эл. ланцугоў, падліку хім. рэчываў з рознымі тыпамі малекулярных злучэнняў і інш.). У 20 ст. задачы, звязаныя з графамі, з’явіліся ў тапалогіі, алгебры, тэорыі лікаў, тэорыі імавернасці і інш. Найб. развіццё графаў тэорыя атрымала з 1950-х г. у сувязі са станаўленнем кібернетыкі і развіццём выліч. тэхнікі.

На Беларусі даследаванні па графаў тэорыі вядуцца ў БДУ (уплыў розных параметраў на ўласцівасці графаў), Ін-це матэматыкі (розныя прадстаўленні графаў, алгарытмічныя аспекты графаў тэорыі), Ін-це тэхн. кібернетыкі (графы ў задачах аптымальнага ўпарадкавання) Нац. АН.

Літ.:

Лекции по теории графов. М., 1990.

Ю.Н.Сацкоў.

т. 5, с. 411

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАМЕТРЫ́ЧНЫЯ ПАБУДАВА́ННІ,

рашэнне некаторых геаметрычных задач з выкарыстаннем дапаможных інструментаў (цыркуля, лінейкі і інш.), якія мяркуюцца абсалютна дакладнымі.

Падзяляецца на геаметрычныя пабудаванні на плоскасці і ў прасторы. Геаметрычнае пабудаванне лічыцца выкананым, калі па зададзеных элементах выяўлены (пабудаваны) шуканыя элементы: пункты, прамыя, акружнасці і інш. У даследаваннях па геаметрычных пабудаваннях выяўляецца шэраг задач, якія можна вырашаць дадзенымі сродкамі, і спосабы рашэння гэтых задач. Напр., з дапамогай цыркуля і лінейкі (аднабаковай, без дзяленняў) можна рашаць задачы, у якіх каардынаты шуканага пункта могуць быць запісаны выразам з канечным лікам складанняў, множанняў, дзяленняў і здабыванняў квадратнага кораня з каардынат зададзеных пунктаў. Напр., цыркулем і лінейкай можна пабудаваць агульную датычную прамую да 2 акружнасцей, але немагчыма рашаць стараж. задачы пра трысекцыю вугла, квадратуру круга, падваенне куба.

т. 5, с. 121

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫЛІЧА́ЛЬНАЯ МАТЭМА́ТЫКА,

раздзел матэматыкі, у якім распрацоўваюцца і даследуюцца метады лікавага рашэння матэм. задач. Метады вылічальнай матэматыкі прыбліжаныя, падзяляюцца на аналітычныя (даюць прыбліжаныя рашэнні ў выглядзе аналітычнага выразу) і лікавыя (у выглядзе табліцы лікаў).

Узнікненне вылічальнай матэматыкі звязана з неабходнасцю рашэння асобных задач (вымярэнне адлегласцей, плошчаў, аб’ёмаў і інш.). Развіццё навукі, асабліва астраноміі і механікі, спрыяла развіццю матэматыкі ўвогуле і вылічальнай матэматыкі ў прыватнасці. Складаліся табліцы эмпірычна знойдзеных залежнасцей, што прывяло да ўзнікнення паняцця функцыі і задачы інтэрпалявання (гл. Інтэрпаляцыя). Поспехі вылічальнай матэматыкі звязаны з імёнамі І.Ньютана, Л.Эйлера, М.І.Лабачэўскага, К.Ф.Гаўса, П.Л.Чабышова, С.А.Чаплыгіна, А.М.Крылова, А.М.Ціханава, А.А.Самарскага, У.І.Крылова, Л.В.Кантаровіча і інш. Многія задачы вылічальнай матэматыкі можна запісаць у выглядзе y=Ax, дзе x і y належаць зададзеным мноствам X і Y, A — некаторы аператар. Для рашэння задачы трэба знайсці у па зададзеным х ці наадварот. У вылічальнай матэматыцы гэта задача рашаецца заменай мностваў X, Y і аператара A (ці толькі некаторых з іх) іншымі, зручнымі для вылічэнняў. Замена робіцца так, каб рашэнне новай задачы y=Bx было ў нейкім сэнсе блізкім да рашэння першапачатковай задачы. Напр., калі ў якасці Ax узяць інтэграл a b x(t) dt , то прыбліжанае значэнне яго ў многіх выпадках можна вылічыць паводле т.зв. квадратурнай формулы a b x(t) dt k 1 n Ak x (tk) , дзе Ak і tk — некаторыя фіксаваныя лікі. Гэта адна з класічных задач вылічальнай матэматыкі. Пры рашэнні яе, асабліва ў выпадку кратнага (шматразовага) і кантынуальнага інтэгравання, карыстаюцца Монтэ-Карла метадам. Прынцыповае значэнне ў вылічальнай матэматыцы належыць тэорыі прыбліжэння функцый, якая адыгрывае і агульнаматэм. ролю. Адна з характэрных задач прыбліжэння функцый — задача інтэрпалявання, г.зн. пабудова для зададзенай функцыі f(t) прыбліжанай функцыі fn(t), якая супадае з f(t) у фіксаваных вузлах t1, t2, ..., tn. У тэорыі прыбліжэння функцый сапраўднага (а пазней і камплекснага) пераменнага распрацоўваліся метады прыбліжэння функцый аднаго класа функцыямі інш. класаў, а таксама вывучаліся пытанні збежнасці і ацэнак прыбліжэнняў. Найб. пашыраныя задачы вылічальнай матэматыкі — задачы алгебры [рашэнне сістэм лінейных алгебраічных ураўненняў, вылічэнне вызначнікаў (дэтэрмінантаў) і адваротных матрыц, знаходжанне ўласных вектараў і ўласных значэнняў матрыц, вызначэнне каранёў мнагачленаў]. У задачы прыбліжанага рашэння сістэмы лінейных ураўненняў Ax=b, дзе A — квадратная матрыца, x і b — вектары-калонкі, часта выкарыстоўваюцца ітэрацыйныя метады. Многія ітэрацыйныя метады рашэння гэтай сістэмы маюць выгляд xk = xk1 + Bk ( b Axk1 ) , дзе Bk ( k = 1, 2, ... ) — некаторая паслядоўнасць матрыц, x° — пачатковае прыбліжэнне, часам адвольнае. Розны выбар матрыц Bk дае розныя ітэрацыйныя працэсы. Значную частку вылічальнай матэматыкі складаюць прыбліжаныя і лікавыя метады рашэння звычайных дыферэнцыяльных ураўненняў, дыферэнцыяльных ураўненняў у частковых вытворных, інтэгральных ураўненняў, інтэгра-дыферэнцыяльных ураўненняў, вылічальныя метады варыяцыйнага злічэння, аптымальнага кіравання, задач стахастычнага аналізу і інш. З’яўленне вылічальных машын значна расшырыла кола задач і стымулявала далейшую распрацоўку метадаў вылічальнай матэматыкі з улікам магчымасцей вылічальных машын, у прыватнасці распрацоўкі спец. алгарытмаў, арыентаваных на паралельную рэалізацыю.

На Беларусі даследаванні па ўсіх асн. кірунках вылічальнай матэматыкі і падрыхтоўкі навук. кадраў пачаліся з 1950-х г. у АН і БДУ пад кіраўніцтвам акад. У.І.Крылова; асобныя пытанні вылічальнай матэматыкі распрацоўваліся і раней.

Літ.:

Березин И.С., Жидков Н.П. Методы вычислений. Т. 1. 3 изд. М., 1966;

Т. 2. 2 изд. М., 1962;

Канторович Л.В., Крылов В.И. Приближенные методы высшего анализа. 5 изд. М.; Л., 1962;

Крылов В.И. Приближенное вычисление интегралов. 2 изд. М., 1967;

Крылов В.И., Скобля Н.С. Справочная книга по численному обращению преобразования Лапласа. Мн., 1968;

Турецкий А.Х. Теория интерполирования в задачах. Мн., 1968;

Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. 2 изд. М.; Л., 1963;

Янович Л.А. Приближенное вычисление континуальных интегралов по гауссовым мерам. Мн., 1976.

Л.А.Яновіч.

т. 4, с. 311

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)