расійскі інжынер-вынаходнік у галіне электратэхнікі. Скончыў Дармштацкае вышэйшае тэхн. вучылішча (1884, Германія). Працаваў на электратэхн. з-дах у Германіі. Стварыў асн. часткі сістэмы трохфазнага току: генератар з вярчальным магнітным полем (1888), асінхронны электрарухавік (1889), трансфарматар (1890), сканструяваў фазометр, дзельнік напружання, пускавыя рэастаты і інш. электравымяральныя прылады. Упершыню ажыццявіў перадачу эл. энергіі трохфазнага пераменнага току на адлегласць (каля 170 км; 1891).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ПАДЗЕ́ЛЬНАСЦЬ,
здольнасць аднаго ліку (ці алг. выразу) дзяліцца на другі (гл.Дзяленне). Напр., адзін цэлы лік кратны другому, калі ў выніку дзялення першага (дзеліва) на другі (дзельнік) атрымліваецца таксама цэлы лік.
Уласцівасці П. залежаць ад таго, якія сукупнасці лікаў разглядаюцца. Лік наз. простым, калі ў яго няма дзельнікаў, адрозных ад яго самога і адзінкі (напр., лікі 2, 3, 5, 7), і састаўным у процілеглым выпадку. Любы цэлы састаўны лік можна адназначна раскласці ў здабытак простых лікаў, напр., 72 = 2∙2∙2∙3∙3. Існуюць прыкметы, па якіх лёгка вызначыць, ці дзеліцца зададзены лік на просты. Напр., лік дзеліцца на 2, калі яго апошняя лічба цотная; лік дзеліцца на 3 (ці 9), калі сума яго лічбаў дзеліцца на 3 (ці 9).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ДЗЯЛЕ́ННЕ,
арыфметычнае дзеянне, адваротнае множанню. Падзяліць лік a (дзеліва) на b (дзельнік адрозны ад нуля) — значыць знайсці такі лік x (дзель), што здабытак bx = a (або xb = a). Для абазначэння Дз. выкарыстоўваюць знакі двукроп’я (a:b), гарыз. () або нахільнай (a/b) рысы.
Для рацыянальных лікаў (цэлых, дробных і нуля) Дз. адназначнае і заўсёды магчымае (акрамя Дз. на нуль, што немагчыма). У межах цэлых лікаў — адназначнае, але не заўсёды магчымае, напр., 6 дзеліцца на 2 і 3, але не дзеліцца на 5. Абагульненнем звычайнага Дз. з’яўляецца Дз. з астачай. Падзяліць цэлыя неадмоўныя лікі a на b — знайсці такія цэлыя неадмоўныя лікі x і y, якія задавальнялі б патрабаванні a = bx + y, y < b, дзе x — няпоўная дзель (пры y ≠ 0) ці дзель (пры y = 0); y — астача. Гл. таксама Падзельнасць.