Вектарнае поле 8/492, 513
Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)
Вектарнае вылічэнне 1/456; 3/9, 328; 7/281
Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)
ВЕ́КТАРНАЕ ЗЛІЧЭ́ННЕ,
раздзел матэматыкі, у якім вывучаюцца дзеянні над вектарамі і іх уласцівасці. Яго развіццё ў 19 ст. выклікана патрэбамі механікі і фізікі. Пачалося з даследаванняў У.Гамільтана і Г.Грасмана па гіперкамплексных ліках. Падзяляецца на вектарную алгебру і вектарны аналіз.
Вектарная алгебра разглядае лінейныя дзеянні над вектарамі (складанне, адніманне вектараў, множанне вектараў на лік), а таксама скалярны здабытак, вектарны здабытак і змешаны здабытак вектараў. Сума
вектараў і — вектар, праведзены з пачатку да канца , калі канец і пачатак супадаюць. Складанне вектараў мае ўласцівасці:
;
;
;
; дзе — нулявы вектар, — вектар, процілеглы вектару (гл. Асацыятыўнасць, Камутатыўнасць). Рознасць вектараў і — вектар такі, што
; рознасць ёсць вектар, які злучае канец вектара з канцом вектара , калі яны адкладзены з аднаго пункта. Здабыткам вектара на лік α наз. вектар α , модуль якога роўны
і які накіраваны аднолькава з вектарам , калі α > 0, і процілеглы пры α < 0. Калі α = 0 ці , то α = . Уласцівасці множання вектара на лік:
;
;
;
. Пры каардынатным заданні вектараў розным дзеяннем над вектарамі адпавядаюць дзеянні над іх каардынатамі. У вектарным аналізе вывучаюцца вектарныя і скалярныя функцыі аднаго ці некалькіх аргументаў і дыферэнцыяльныя аперацыі над гэтымі функцыямі (гл., напр., Градыент, Дывергенцыя).
А.А.Гусак.
т. 4, с. 63
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АДЗІ́НКАВЫ ВЕ́КТАР,
орт, вектар, даўжыня якога прынята за адзінку выбранага маштабу. Адвольны вектар можна атрымаць з якога-н. калінеарнага яму адзінкавага вектара множаннем на лік (скаляр) λ : = . Гл. таксама Вектарнае злічэнне.
т. 1, с. 108
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЕ́КТАРНЫ ЗДАБЫ́ТАК вектараў і , вектар , модуль якога роўны плошчы паралелаграма, пабудаванага на вектарах і , перпендыкулярны плоскасці гэтага паралелаграма і накіраваны так, што вектары , і утвараюць правую тройку. Абазначаецца = [ ] або = × . Уведзены У.Гамільтанам (1853). Выкарыстоўваецца ў геаметрыі, механіцы і фізіцы. Гл. таксама Вектарнае злічэнне.
т. 4, с. 64
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АСТРАГРА́ДСКАГА ФО́РМУЛА,
звязвае інтэграл па некаторым аб’ёме з інтэгралам па замкнёнай паверхні, што абмяжоўвае гэты аб’ём. У вектарнай форме мае выгляд:
, дзе = (M) — вектарнае поле, зададзенае ў кожным пункце M аб’ёму V, — дывергенцыя ,
— паток праз замкнёную паверхню S. Прапанавана М.В.Астраградскім (1828—31) і пашырана на n-мерную прастору (1834—38).
т. 2, с. 49
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЗМЕ́ШАНЫ ЗДАБЫ́ТАК вектараў , , , лік, роўны скалярнаму здабытку вектара на вектарны здабытак вектараў і . Запісваецца ў выглядзе
. Лікава роўны аб’ёму паралелепіпеда, пабудаванага на вектарах , , , які бярэцца са знакам плюс, калі гэтыя вектары ўтвараюць правую тройку, і са знакам мінус у процілеглым выпадку. Выкарыстоўваецца ў геаметрыі, механіцы і фізіцы. Гл. таксама Вектарнае злічэнне.
т. 7, с. 96
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІ́ЛЬБЕРТАВА ПРАСТО́РА,
абагульненне эўклідавай прасторы на бясконцамерны выпадак. Уведзена ў канцы 19 — пач. 20 ст. ў працах Д.Гільберта як вынік абагульнення фактаў і метадаў раскладання функцый у артаганальныя шэрагі, а таксама даследаванняў інтэгральных ураўненняў. Выкарыстоўваецца ў розных раздзелах матэматыкі, тэорыі імавернасцей, тэарэт. фізікі.
Першасна гільбертава прастора — прастора бясконцых паслядоўнасцей, напр., x = (x1, x2,..., xn, ...) са збежным шэрагам квадратаў x12 + x22 + ... + xn2 + ... . Суму двух элементаў (вектараў) паслядоўнасцей, іх скалярны здабытак і інш. вылічваюць пакаардынатна па звычайных правілах (гл. Вектарная прастора, Вектарнае злічэнне). У больш шырокім сэнсе гільбертава прастора — лінейная прастора, для якой вызначаны скалярны здабытак. У залежнасці ад вызначэння множання элементаў на сапраўдны ці камплексны лік адрозніваюць сапраўдныя і камплексныя гільбертавы прасторы.
т. 5, с. 244
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЕ́КТАР
(ад лац. vector вядучы, нясучы),
1) накіраваны адрэзак пэўнай даўжыні. Абазначаецца лац. літарамі тлустага шрыфту a, A (AB — калі пачатак вектара ў пункце A, канец у пункце B) ці светлага шрыфту з рыскай або стрэлкай над імі: a̅, , A̅B̅, A. Даўжынёй (модулем) вектара наз. даўжыня адрэзка AB і абазначаецца AB ці |A|.
Два вектары роўныя, калі яны паралельныя ці аднолькава накіраваныя і маюць аднолькавую даўжыню. Вектар, пачатак і канец якога супадаюць, наз. нуль-вектарам, даўжыня яго роўная нулю. Яму не прыпісваецца ніякі напрамак. Вектар, даўж. якога роўная адзінцы, наз. адзінкавым. На плоскасці ці ў прасторы ўсякі вектар можа быць паказаны накіраваным адрэзкам, адкладзеным ад пачатку каардынат. Таму вектар можна задаваць трыма сапраўднымі лікамі (x, y, z) — праекцыямі вектара на восі прамавугольнай сістэмы каардынат (каардынатамі вектара). У n-мернай прасторы вектар вызначаецца як упарадкаваная сістэма n сапраўдных лікаў (x1, x2, ..., xn).
З дапамогай вектара ў матэматыцы, фізіцы і механіцы апісваюцца сілы, скорасці, паскарэнні і інш. велічыні, зададзеныя лікам і напрамкам. Гл. таксама Вектарнае злічэнне.
2) У пераносным сэнсе — пэўны кірунак у якой-н. сферы дзейнасці ці адносін (напр., у палітыцы, эканоміцы і г.д.).
А.А.Гусак.
т. 4, с. 63
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)