Незалежнасць аксіём 7/474

Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)

Несупярэчлівасць сістэмы аксіём 1/201

Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)

ЛАБАЧЭ́ЎСКАГА ГЕАМЕ́ТРЫЯ,

геаметрычная тэорыя, сістэма аксіём якой адрозніваецца ад сістэмы аксіём эўклідавай геаметрыі толькі аксіёмай (пастулатам) аб паралельнасці. Паводле гэтай аксіёмы, праз пункт, што не ляжыць на зададзенай прамой, праходзяць не менш як 2 прамыя, якія не перасякаюць зададзеную. Л.г. выкарыстоўваецца ў тэорыі функцый, матэм. аналізе, тэорыі лікаў і тэорыі адноснасці.

Л.г. распрацавана М.І.Лабачэўскім у 1826 (апублікавана ў 1829—30). У 1832 аналагічныя вынікі незалежна атрымаў Я.Больяй. Перадумовай узнікнення Л.г. былі шматвяковыя спробы доказу аксіёмы пра паралельныя прамыя (пяты пастулат Эўкліда) на аснове астатніх аксіём. Лабачэўскі першы прыйшоў да высновы пра недаказальнасць пастулата і пра магчымасць існавання геам. сістэм з інш. аксіёмамі паралельнасці, пабудаваў своеасаблівую лагічна бездакорную геам. сістэму. Л.г. мае некаторыя асаблівасці (напр., 2 трохвугольнікі з роўнымі вугламі роўныя; сума вуглоў трохвугольніка меншая за 2 прамыя вуглы), якія не супярэчаць рэчаіснасці. Стварэнне Л.г. заклала асновы развіцця неэўклідавых геаметрый. значна пашырыла ўяўленні аб прыродзе прасторы і спрыяла ўзнікненню новых кірункаў у матэматыцы.

Літ.:

Смородинский Я.А., Сурков Е.Л. Геометрия Лобачевского и теория относительиости. М., 1971;

Лаптев Б.Л. Геометрия Лобачевского, ее история и значение. М.,1976.

В.І.Вядзернікаў.

т. 9, с. 81

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКСІЯМАТЫ́ЧНЫ МЕ́ТАД,

спосаб пабудовы навук. тэорыі ў выглядзе сістэмы пастулатаў (аксіём) і правіл вываду (аксіяматыкі), што дае магчымасць логікавымі разважаннямі атрымліваць сцвярджэнні (тэарэмы) дадзенай тэорыі.

Узнік у работах стараж.-грэч. матэматыкаў. Напр., у «Асновах» Эўкліда праведзена ідэя атрымання асн. зместу геаметрыі з невялікай колькасці аксіём, праўдзівасць якіх лічыцца відавочнай. Адкрыццё ў 19 ст. неэўклідавых геаметрый стымулявала ўзнікненне праблем больш агульнага характару (напр., несупярэчлівасці, паўнаты і незалежнасці той ці інш. сістэмы аксіём). Гэта адкрыла шлях да фармалізаванага развіцця тэорый: пошуку інш. сістэм паняццяў (тэорый, галін ведаў), якія падпарадкоўваюцца тым жа аксіёмам, выяўлення новых інтэрпрэтацый пэўнай сістэмы аксіём, што дало магчымасць адкрываць новыя навук. факты. Д.Гільберт і яго школа спадзяваліся на аснове аксіяматычнага метаду вырашыць гал. пытанні абгрунтавання матэматыкі. Аднак вынікі аўстр. і амер. матэматыка і логіка К.Гёдэля (1931) выявілі неажыццявімасць гэтай праграмы, напр. тэарэма аб непаўнаце арыфметыкі сведчыць аб абмежаванасці аксіяматычнага метаду. У 20 ст. дзякуючы развіццю матэматычнай логікі стала магчымым аксіяматызаваць тыя сродкі логікі, з дапамогай якіх выводзяцца адны сцвярджэнні аксіяматычнай тэорыі з інш. яе сцвярджэнняў, што мае істотнае значэнне для аўтаматызацыі разумовай працы.

Сучасныя навук. тэорыі, пабудаваныя пры дапамозе аксіяматычнага метаду, наз. дэдуктыўнымі. Усе паняцці такіх тэорый (акрамя фіксаванай колькасці першапачатковых) уводзяцца пры дапамозе вызначэнняў, якія выражаюць іх змест праз першапач. паняцці. У той ці інш. меры дэдуктыўныя доказы, характэрныя для аксіяматычнага метаду, выкарыстоўваюцца ў многіх навуках, найб. у матэматыцы, логіцы, некаторых раздзелах фізікі, біялогіі і інш. Тэорыі, пабудаваныя пры дапамозе аксіяматычнага метаду, нярэдка маюць выгляд фармалізаваных сістэм, якія даюць дакладнае апісанне лагічных сродкаў вываду тэарэм з аксіём. Доказ такой тэорыі ўяўляе сабой паслядоўнасць формул, кожная з якіх з’яўляецца аксіёмай або атрымліваецца з папярэдніх формул па адным з прынятых правіл вываду. У адрозненне ад такіх фармальных доказаў уласцівасці самой фармальнай сістэмы ў цэлым вывучаюцца змястоўнымі сродкамі метатэорыі. Асн. патрабаванні да аксіяматычных фармальных сістэм: несупярэчлівасць, паўната, незалежнасць аксіём. Аксіяматычны метад — адзін з метадаў пабудовы навук. ведаў, які мае абмежаванае выкарыстанне, бо патрабуе высокага ўзроўню развіцця навук. тэорыі. Нават некаторыя дастаткова багатыя навук. тэорыі (напр., арыфметыка натуральных лікаў) не дапускаюць поўнай аксіяматызацыі. Гэта сведчыць аб немагчымасці поўнай фармалізацыі навук. ведаў.

Літ.:

Садовский В.Н. Аксиоматический метод построения научного знания // Философские вопросы современной формальной логики. М., 1962;

Столл Р. Множества. Логика: Аксиоматич. теории.: Пер. с англ. М., 1968;

Новиков П.С. Элементы математической логики. 2 изд. М., 1973.

Р.Т.Вальвачоў, У.К.Лукашэвіч.

т. 1, с. 207

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫ́ВАД у логіцы, разважанне, у ходзе якога з зыходных суджэнняў (выказванняў), пасылак ці прадпасылак выводзіцца заключэнне — суджэнне, што лагічна з іх вынікае. Вывад можа быць непасрэдны і ўскосны, дакладны і гіпатэтычны. У сімвалічнай логіцы вывад вызначаецца больш строга — як паслядоўнасць выказванняў ці формул, што складаецца з аксіём, пасылак і раней даказаных формул (тэарэм). У матэматычнай логіцы пад вывадам разумеюць паслядоўнасці формул, дзе кожная з’яўляецца або зыходнай формулай, або аксіёмай, або вынікам, атрыманым паводле правіл логікі з папярэдніх формул. Гл. Дэдукцыя, Індукцыя.

т. 4, с. 301

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРЫФМЕ́ТЫКА

(ад грэчаскага arithmos лік),

навука, галоўны аб’ект якой цэлыя, рацыянальныя лікі і дзеянні над імі. Узнікла ў старажытныя часы з практычных патрэб чалавека лічыць і вымяраць. Для падліку вялікай колькасці аб’ектаў створаны сістэмы лічэння. Найбольш зручная дзесятковая сістэма лічэння; існуюць таксама сістэмы лічэння з асновамі 5, 12, 20, 40, 60 і нават 11 (Новая Зеландыя). З пашырэннем вылічальнай тэхнікі выкарыстоўваецца двайковая сістэма лічэння.

Да пачатку нашай эры былі атрыманы дастаткова глыбокія вынікі: даказана бесканечнасць мноства простых лікаў, несувымернасць стараны квадрата і яго дыяганалі (па сутнасці доказ ірацыянальнасці ліку √2), створаны алгарытм выяўлення агульнай меры двух адрэзкаў і найбольшага агульнага дзельніка, Піфагорам знойдзены агульны выгляд цэлалікавых катэтаў і гіпатэнузы прамавугольных трохвугольнікаў, значны ўплыў на развіццё арыфметыкі зрабіў Архімед. Фундаментальнае значэнне арыфметыкі як навукі стала зразумелым у канцы 17 стагоддзя ў сувязі з далучэннем да яе паняцця ірацыянальнага ліку. Развіццё апарату сувязяў паміж гэтымі лікамі і іх рацыянальнымі набліжэннямі (у прыватнасці, дзесятковымі), а таксама вынаходства і дастасаванне лагарыфмаў (шатландскі матэматык Дж.Непер) значна пашырылі тэматыку даследаванняў. Шматлікія пытанні знайшлі вырашэнне ў лікаў тэорыі. Спроба Г.Грасмана аксіяматычнай пабудовы арыфметыкі (сярэдзіна 19 стагоддзя) завершана італьянскім матэматыкам Дж.Пеана ў выглядзе 5 аксіём: 1) адзінка ёсць натуральны лік; 2) наступны за натуральным лікам ёсць таксама натуральны лік; 3) у адзінкі няма папярэдняга натуральнага ліку; 4) калі натуральны лік a стаіць за натуральным лікам b і за натуральным лікам c, то b і c тоесныя; 5) калі якое-небудзь сцвярджэнне даказана для адзінкі і калі з дапушчэння, што яно праўдзівае для натуральнага ліку n, вынікае, што яно выконваецца і для наступнага за n натуральнага ліку, то гэта сцвярджэнне справядліва для адвольнага натуральнага ліку (аксіёма поўнай матэматычнай індукцыі). Па-за прапанаванай сістэмай аксіём застаюцца многія пытанні, у якіх вывучаецца ўся бесканечная сукупнасць натуральных лікаў, што патрабуе даследавання несупярэчлівасці адпаведнай сістэмы аксіём і больш дэталёвага аналізу сэнсу сцвярджэнняў, якія вынікаюць з яе. Як навука арыфметыка часам атаясамліваецца з тэорыяй лікаў.

Літ.:

История математики с древнейших времен до начала XIX столетия. Т. 1—3. М., 1970—72. Депман И.Я. История арифметики. 2 изд. М., 1965.

В.І.Бернік.

т. 2, с. 9

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРГУМЕ́НТ

(лац. argumentum),

1) суджэнне (або іх сукупнасць), што прыводзіцца ў пацвярджэнне праўдзівасці інш. суджэння, канцэпцыі, тэорыі.

2) У логіцы — пасылка доказу (інакш — падстава або довад доказу); часам аргументам называюць увесь доказ цалкам. Лагічныя довады для абгрунтавання якога-н. палажэння называюць аргументацыяй. Азначае таксама працэс лагічнага доказу ісціннасці якога-н. палажэння (суджэння) пры дапамозе аргумента (аксіём, азначэнняў і выказванняў аб фактах). Аргументацыя ажыццяўляецца ў адпаведнасці з правіламі пабудовы доказаў (правілы катэгарычнага сілагізму, умоўна-раздзяляльнага, умоўнага сілагізму і інш.). У ёй можа быць выкарыстана адвольная, але канечная колькасць аргумента. Спосаб сувязі аргумента паміж сабой ці з тэзісам (палажэннем, якое аргументуецца) наз. дэманстрацыяй, формай доказу або формай аргументацыі.

У.К.Лукашэвіч.

т. 1, с. 474

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БУРБАКІ́ Нікала

(Bourbaki Nicolas),

псеўданім групы франц. матэматыкаў. У групу, створаную ў 1937, аб’ядналіся выпускнікі Вышэйшай нармальнай школы (А.Картан, А.Вейль, Ж.Дзьеданэ і інш.), аднак колькасць удзельнікаў і поўны склад групы не абвешчаны. Выступаюць у друку, на кангрэсах і з’ездах ад імя адной асобы. Бурбакі паставілі перад сабой мэту стварыць трактат «Элементы матэматыкі», які ахапіў бы гал. раздзелы сучаснай матэматыкі на аснове фармальнага аксіяматычнага метаду.

За 1939—77 Бурбакі ў Францыі выдадзена больш за 40 твораў, значная частка якіх перакладзена на інш. мовы. Выкладанне матэм. тэорыі мае абстрактны і фармалізаваны характар, даецца толькі іх лагічны каркас. Аснова выкладання — т.зв. структуры, вызначаныя паводле аксіём. Спосаб разважання — ад агульнага да асобнага. Самыя істотныя вынікі атрыманы ў тапалогіі, тапалагічнай алгебры, алг. геаметрыі, тэорыі функцый многіх камплексных пераменных, тэорыі алг. лікаў і функцыянальным аналізе.

Тв.:

Рус. пер. — Очерки по истории математики. М., 1963;

Начала математики. Ч. 1, кн. 1. Теория множеств. М., 1965;

Общая топология: Тополог. группы... М., 1969.

т. 3, с. 347

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БУ́ЛЕВА А́ЛГЕБРА,

апарат сімвалічнай логікі; сукупнасць аб’ектаў з аперацыямі алгебры логікі, якія падпарадкаваны пэўным аксіёмам. Прапанавана Дж.Булем для аналізу рэлейных схем. Знайшла дастасаванне ў тапалогіі, тэорыі імавернасцей і інш. раздзелах матэматыкі. У аксіёмах булева алгебры адлюстравана аналогія паміж паняццямі «мноства», «падзея», «выказванне». Асн. паняцці булева алгебры: логікавая (булева) функцыя, элементарная логікавая функцыя, функцыйна поўная сістэма логікавых функцый, мінімізацыя булевых функцый.

Логікавая функцыя n булевых аргументаў прымае значэнні 0 і 1, азначаецца праўдзіваснай табліцай або аналітычнай залежнасцю ад элементарных логікавых функцый. Вызначана 16 элементарных функцый: кан’юнкцыі (логікавае множанне; аперацыя «І»), дыз’юнкцыі (складанне; «АБО»), інверсіі (адмаўленне; «НЕ»), эквівалентнасці (тоеснасць), складання па модулі 2 (выключальнае «АБО») і інш. Функцыйна поўная сістэма логікавых функцый — сукупнасць функцый, дастатковая для выражэння логікавай функцыі любой складанасці, напр., аперацыя Пірса, аперацыя Шэфера. Мінімізацыя логікавых функцый праводзіцца з мэтай упарадкавання і спрашчэння складаных функцый з дапамогай аксіём булева алгебры, картаў Карно, метадаў Квайна і Мак-Класкі і інш.

Булева алгебра з’яўляецца логікавай асновай функцыянальнай арганізацыі лічбавых ЭВМ; элементарныя логікавыя функцыі рэалізаваны ў спец. інтэгральных мікрасхемах для ЭВМ.

Літ.:

Янсен Й. Курс цифровой электроники: Пер. с голланд.: В 4 т. Т. 1. М., 1987.

А.С.Кабайла.

т. 3, с. 330

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАМЕ́ТРЫЯ

(ад геа... + ...метрыя),

раздзел матэматыкі, які вывучае прасторавыя дачыненні і формы цел, а таксама інш. дачыненні і формы, падобныя да прасторавых паводле сваёй структуры. Узнікла з практычных патрэб чалавека для вызначэння адлегласці, вуглоў, плошчаў, аб’ёмаў і інш. Без геаметрыі немагчыма развіццё астраноміі, геадэзіі, картаграфіі, крышталяграфіі, адноснасці тэорыі і ўсіх графічных метадаў. Геам. тэорыі выкарыстоўваюцца ў механіцы і фізіцы: магчымыя канфігурацыі (узаемнае размяшчэнне элементаў) мех. сістэмы ўтвараюць «канфігурацыйную прастору» (рух сістэмы адлюстроўваецца рухам пункта ў гэтай прасторы); сукупнасць станаў фіз. сістэмы разглядаецца як «фазавая прастора» сістэмы і інш.

Асн. паняцці геаметрыі (лінія, паверхня, пункт, цела геаметрычнае) узніклі ў выніку абстрагавання ад інш. уласцівасцей цел (напр., масы, колеру). Параўнанне цел абумовіла ўзнікненне паняццяў даўжыні, плошчы, аб’ёму, меры вугла. Самыя простыя геам. звесткі і паняцці былі вядомы ў стараж. Егіпце, Вавілоне, Кітаі, Індыі; геам. палажэнні фармуляваліся ў выглядзе правіл з элементарнымі доказамі або без доказаў. Самастойнай навукай геаметрыя стала ў Стараж. Грэцыі (5 ст. да н.э.); геаметрыя ў аб’ёме, які прыкладна адпавядае сучаснаму курсу элементарнай геаметрыі, выкладзена ў «Пачатках» Эўкліда (3 ст. да н.э.). Развіццё астраноміі і геадэзіі прывяло да стварэння плоскай (гл. Трыганаметрыя) і сферычнай трыганаметрыі (1—2 ст. да н.э.). Інтэнсіўнае развіццё геаметрыі пачынаецца з 17 ст.: Р.Дэкарт прапанаваў метад каардынат; І.Ньютан і Г.Лейбніц стварылі дыферэнцыяльнае і інтэгральнае злічэнне, што дало магчымасць вывучаць геам. аб’екты метадамі алгебры і аналізу бясконца малых (гл. Алгебраічная геаметрыя, Аналітычная геаметрыя, Дыферэнцыяльная геаметрыя); Ж.Дэзарг і Б.Паскаль заклалі асновы праектыўнай геаметрыі. У працах Г.Монжа (18 ст.) сучасны выгляд набыла нарысоўная геаметрыя. У 1826 М.А.Лабачэўскі пабудаваў геаметрыю на аснове сістэмы аксіём, якія адрозніваюцца ад эўклідавай толькі аксіёмай аб паралельных прамых (гл. Лабачэўскага геаметрыя). Стала магчымым будаванне разнастайных прастораў з рознымі геаметрыямі (гл., напр., Неэўклідавы геаметрыі), сістэматызацыя якіх магчыма з дапамогай груп тэорыі. Пасля гэтага павялічылася роля і пашырылася выкарыстанне аксіяматычнага метаду. У 1872 Ф.Клейн сфармуляваў новае тлумачэнне геаметрыі як навукі аб уласцівасцях, інварыянтных адносна зададзенай групы пераўтварэнняў. Паралельна развіваўся логікавы аналіз асноў геаметрыі, высвятляліся пытанні несупярэчлівасці, мінімальнасці і паўнаты сістэмы аксіём. Вынікі гэтых работ падвёў Д.Гільберт у кн. «Асновы геаметрыі» (1899). У працах сав. матэматыкаў П.С.Аляксандрава, Л.С.Пантрагіна, П.С.Урысона развіваліся асн. кірункі тапалогіі. Кірунак «Геаметрыя ў цэлым» заснавалі сав. матэматыкі А.Д.Аляксандраў, М.У.Яфімаў, А.Б.Пагарэлаў.

На Беларусі станаўленне геаметрыі пачалося ў 1930-я г. Атрыманы важныя вынікі ў праблеме ўкладання рыманавых прастораў у эўтслідавы і рыманавы прасторы (Ц.Л.Бурстын); метадамі вонкавых форм даследаваны лініі і паверхні Картана ў неэўклідавых прасторах (Л.К.Тутаеў); адкрыты клас аднародных прастораў і распрацавана іх тэорыя (В.І.Вядзернікаў, А.С.Фядзенка, Б.П.Камракоў).

Літ.:

Александров А.Д., Нецветаев Н.Ю. Геометрия. М., 1990;

Алгебра и аналитическая геометрия. Ч. 1. Мн., 1984;

Дифференциальная геометрия. Мн., 1982;

Феденко А.С. Пространства с симметриями. Мн., 1977.

А.А.Гусак.

т. 5, с. 121

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)