ДВАЙКО́ВАЯ СІСТЭ́МА ЛІЧЭ́ННЯ,

пазіцыйная сістэма лічэння з асновай 2. Мае толькі 2 знакі — лічбы 0 i 1. Лік 2 лічыцца адзінкай 2-га разраду і запісваецца ў выглядзе 10 (чытаецца: «адзін—нуль»), лік 4—3-га разраду і запісваецца як 100 і г.д. Кожная адзінка наступнага разраду ўдвая большая за папярэднюю. Каб лік, запісаны ў дзесятковай сістэме лічэння, запісаць у Д.сл., яго выражаюць праз ступені ліку 2, напр., 4510 = 1∙2​5 + 0∙2​4 + 1∙2​3 + 1∙2​2 + 0∙2​1 + 1∙2​0 = 1011012. Выкарыстоўваецца ў тэарэт. пытаннях і для апрацоўкі інфармацыі на лічбавых ЭВМ (уваходныя і выхадныя даныя прадстаўляюць у дзесятковай сістэме лічэння).

У Д.с.л. найб. проста выконваюцца ўсе арыфм. дзеянні, напр., табліца множання зводзіцца да роўнасці 11 = 1. Аднак гэта сістэма нязручная з-за грувасткага запісу лікаў, напр., лік 9000 у Д.с.л. будзе 14-разрадным. Каб скараціць даўжыню запісаў праграм для ЭВМ, кожныя 3 ці 4 двайковыя лічбы замяняюць адным сімвалам (з алфавіта 0, 1, ..., 7 або 0, 1, ..., 9, A B, C, D, E, F адпаведна) і атрымліваюць запіс у васьмярковай ці шаснаццатковай сістэме лічэння. Гл. таксама Лічэнне.

М.П.Савік.

т. 6, с. 73

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДЗЕСЯТКО́ВАЯ СІСТЭ́МА ЛІЧЭ́ННЯ,

найбольш пашыраная пазіцыйная сістэма лічэння з асновай 10. Мае 10 сімвалаў — лічбы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Мяркуюць, што выбар у якасці асновы ліку 10 бярэ пачатак ад лічэння на пальцах. Узнікла на аснове нумарацыі, якая зарадзілася ў Індыі ў 5 ст., назву арабскай атрымала таму, што ў Еўропе з ёй пазнаёміліся ў 10—12 ст. па лац. перакладах з араб. мовы; у Расіі Дз.с.л. пачала пашырацца з 17 ст.

Пазіцыйны прынцып Дз.с.л. азначае, што адзін і той жа знак (лічба) мае розныя значэнні ў залежнасці ад таго месца, на якім ён стаіць, і таму асобныя сімвалы патрэбныя толькі пры запісе першых 10 лікаў. Лік 10 (аснова Дз.с.л.) утварае адзінку 2-га разраду, 10 адзінак 2-га разраду (лік 100 = 10​2) — адзінку 3-га разраду і г.д. (адзінка кожнага наступнага разраду ў 10 разоў большая за адзінку папярэдняга). Для запісу ліку ў Дз.с.л. выяўляюць колькасць адзінак найвышэйшага разраду, потым у астачы — колькасць адзінак разраду, на 1 меншага, і г.д. Атрыманыя лічбы запісваюць побач, напр., 4·10​2 + 7·10​1 + 3·10​0 = 473. Гл. таксама Лічэнне.

М.П.Савік.

т. 6, с. 107

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

А́ЛГЕБРА,

навука пра сістэмы аб’ектаў той ці інш. прыроды, у якіх устаноўлены аперацыі, па сваіх уласцівасцях падобныя на складанне і множанне лікаў (алг. аперацыі). Задачы і метады алгебры ствараліся паступова, у выніку пошукаў агульных прыёмаў рашэння аднатыпных арыфм. задач (пераважна састаўлення і рашэння ўраўненняў).

Вялікі ўплыў на развіццё алг. ідэй і сімволікі зрабіла «Арыфметыка» Дыяфанта (3 ст.). Тэрмін «алгебра» паходзіць ад назвы твора Мухамеда аль-Харэзмі «Альджэбр аль-мукабала» (9 ст.), які мае агульныя метады рашэння алгебраічных ураўненняў (АУ) 1-й і 2-й ступеняў. У канцы 15 ст. замест грувасткіх слоўных апісанняў алг. дзеянняў у матэм. творах з’яўляюцца знакі «+» і «-», потым знакі ступеняў, кораняў, дужкі. У канцы 16 ст. Ф.Віет першы выкарыстаў літарныя абазначэнні. Да сярэдзіны 17 ст. ў асн. склалася сучасная алг. сімволіка. У далейшым погляд на алгебру мяняўся. Алгебра 17—18 ст. займалася літарнымі вылічэннямі (рашэнне АУ, тоеснае пераўтварэнне формул і інш.) у адрозненне ад арыфметыкі, якая аперыруе канкрэтнымі лікамі. Да сярэдзіны 18 ст. алгебра склалася прыблізна ў аб’ёме цяперашняй т.зв. элементарнай алгебры. Алгебра 18—19 ст. з’яўляецца ў асн. алгебрай мнагачленаў. Першай гіст. задачай алгебры было рашэнне АУ з адным невядомым. У 16 ст. італьян. матэматыкамі была знойдзена формула для рашэння ўраўненняў 3-й ступені (формула Кардана), потым метад рашэння ўраўненняў 4-й ступені (метад Ферары). Амаль 3 стагоддзі вёўся пошук формулы для рашэння ўраўненняў вышэйшай ступені. У 17 ст. ўпершыню выказана А.Жырарам, а ў канцы 18 ст. К.Гаўсам даказана асн. тэарэма алгебры аб існаванні камплекснага кораня для адвольных АУ з камплекснымі каэфіцыентамі. У 1824 Н.Абель даказаў, што ўраўненне вышэй 4-й ступені ў агульным выпадку ў радыкалах невырашальнае, а ў 1830 Э.Галуа знайшоў крытэрый вырашальнасці ў радыкалах АУ. Разам з тэарэмай АУ з адным невядомым разглядаліся сістэмы АУ з многімі невядомымі, у прыватнасці сістэмы лінейных ураўненняў, у сувязі з чым узніклі паняцці матрыцы і дэтэрмінанта. З сярэдзіны 19 ст. даследаванні ў алгебры паступова пераносяцца з тэорыі АУ да вывучэння адвольных алг. аперацый. Абстрактнае паняцце алг. аперацыі ўзнікла ў сярэдзіне 19 ст. ў сувязі з даследаваннем прыроды камплексных лікаў, а таксама ў выніку з’яўлення прыкладаў алг. аперацый над элементамі зусім інш. прыроды, чым лікі, — складанне і множанне матрыц і інш.

У пачатку 20 ст. алгебра стала разглядацца як агульная тэорыя алг. аперацый на аснове аксіяматычнага метаду (сфарміравалася пад уплывам прац Ц.Гільберта, Э.Штэйніца, Э.Арціна, Э.Нётэр і інш.). Сучасная алгебра вывучае мноствы адвольнай прыроды з зададзенымі на іх алг. аперацыямі (г.зн. алгебра ці універсальныя алгебра). Доўгі час вывучаліся толькі некалькі тыпаў універсальных алгебраў — групы, кольцы, лінейныя прасторы. Пазней пачалося вывучэнне абагульненняў паняцця групы — паўгрупы, квазігрупы і лупы. Разам з асацыятыўнымі кольцамі і алгебрай пачалі вывучацца і неасацыятыўныя кольцы і алгебра. Асацыятыўна-камутатыўныя кольцы і палі з’яўляюцца асн. аб’ектам вывучэння камутатыўнай алгебры, з якой цесна звязана алгебраічная геаметрыя. Важным тыпам алгебры з’яўляюцца структуры. Лінейныя прасторы, модулі, а таксама іх лінейныя пераўтварэнні і сумежныя пытанні вывучае лінейная алгебра, часткай якой з’яўляюцца тэорыі лінейных ураўненняў і матрыц. Да лінейнай алгебры прымыкае полілінейная алгебра. Першыя працы па агульнай тэорыі адвольных універсальных алгебраў належаць Г.Біркгафу (1830-я г.). У тыя ж гады А.І.Мальцаў і А.Тарскі заклалі асновы тэорыі мадэляў — мностваў з зададзенымі на іх адносінамі. У выніку цеснага збліжэння тэорыі універсальных алгебраў з тэорыяй мадэляў узнік новы раздзел алгебры, сумежны з алгебрай і матэматычнай логікай, — тэорыя алг. сістэм, якая вывучае мноствы з зададзенымі на іх алг. аперацыямі і адносінамі (гл. Алгебра логікі). Дысцыпліны, сумежныя з алгебрай і інш. часткамі матэматыкі, вызначаюцца ўнясеннем ва універсальныя алгебры дадатковых структур, узгодненых з алг. аперацыямі і адносінамі: тапалагічная алгебра, у т. л. тапалагічныя групы і групы Лі, тэорыя ўнармаваных кольцаў, дыферэнцыяльная алгебра, тэорыі розных упарадкаваных алгебраў. Да сярэдзіны 1950-х г. сфарміравалася гамалагічная алгебра, карані якой ляжаць у алгебры і тапалогіі.

Алг. паняцці і метады выкарыстоўваюцца ў геаметрыі, тэорыі лікаў, функцыян. аналізе, тэорыі дыферэнцыяльных ураўненняў, метадах вылічэнняў і інш. Алгебра мае вял. дачыненне да фізікі (выяўленні груп у квантавай фізіцы), крышталяграфіі (дыскрэтныя групы), кібернетыкі (тэорыі аўтаматаў і кадзіравання), матэм. эканомікі (лінейныя няроўнасці) і інш. Сістэм. даследаванні па алгебры на Беларусі пачалі Дз.А.Супруненка (1945) і С.А.Чуніхін (1953). Вядуцца пераважна ў Ін-це матэматыкі АН Беларусі, БДУ, Гомельскім ун-це ў школах У.П.Платонава, А.Я.Залескага, Л.А.Шамяткова.

Літ.:

Математика, её содержание, методы и значение. Т. 1—3. М., 1956;

Бурбаки Н. Очерки по истории математики: Пер. с фр. М., 1963.

Р.Т.Вальвачоў.

т. 1, с. 233

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРА́ФАЎ ТЭО́РЫЯ,

раздзел матэматыкі, які вывучае аб’екты на аснове геаметрычнага падыходу. Асн. паняцце графаў тэорыі — граф: мноства пунктаў (вяршынь) і мноства сувязей (рэбраў, дуг), што злучаюць некаторыя (або ўсе) пары вяршынь. Напр., сетка чыгунак, аўтамаб. (або інш.) дарог з пазначэннем на дугах адлегласцей паміж населенымі пунктамі або іх прапускных здольнасцей. Выкарыстоўваецца ў тэорыі перадачы інфармацыі, тэорыі трансп. сетак, камп’ютэрнай графіцы, аўтаматызацыі праектавання і інш.

Першыя задачы графаў тэорыі былі звязаны з рашэннем галаваломак і матэм. забаўляльных задач (напр., задачы аб Кёнігсбергскіх мастах, аб расстаноўцы ферзей на шахматнай дошцы, аб перавозках, кругасветным падарожжы, задача 4 фарбаў і інш.). Адным з першых вынікаў у графаў тэорыі быў крытэрый існавання абходу графа без паўтораў рэбраў (Л.Эйлер, 1736). У 19 ст. з’явіліся работы, у якіх пры рашэнні практычных задач атрыманы важныя вынікі ў графаў тэорыі (задачы пабудавання эл. ланцугоў, падліку хім. рэчываў з рознымі тыпамі малекулярных злучэнняў і інш.). У 20 ст. задачы, звязаныя з графамі, з’явіліся ў тапалогіі, алгебры, тэорыі лікаў, тэорыі імавернасці і інш. Найб. развіццё графаў тэорыя атрымала з 1950-х г. у сувязі са станаўленнем кібернетыкі і развіццём выліч. тэхнікі.

На Беларусі даследаванні па графаў тэорыі вядуцца ў БДУ (уплыў розных параметраў на ўласцівасці графаў), Ін-це матэматыкі (розныя прадстаўленні графаў, алгарытмічныя аспекты графаў тэорыі), Ін-це тэхн. кібернетыкі (графы ў задачах аптымальнага ўпарадкавання) Нац. АН.

Літ.:

Лекции по теории графов. М., 1990.

Ю.Н.Сацкоў.

т. 5, с. 411

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ІЗАТАПІ́ЧНЫ СПІН,

адзін з квантавых лікаў, які характарызуе адроны, кваркі, лептоны і некаторыя інш. элементарныя часціцы. Адрозніваюць моцны і слабы І.с., якія сваімі ўласцівасцямі нагадваюць звычайны спін у квантамеханіцы.

Моцны І.с. вызначае колькасць розных зарадавых станаў адронаў ці кваркаў у ізатапічным мультыплеце (гл. Ізатапічная інварыянтнасць). І.с. адронаў можа прымаць цэлыя і паўцэлыя значэнні: 0; ​1/2; 1; ​3/2... Паміж эл. зарадам Q, трэцяй праекцыяй І.с. Т3, барыённым зарадам B, дзіўнасцю S, чароўнасцю C і прыгажосцю b існуе сувязь: Q=T3+​1/2(B+S+C-b). Напр., нуклону (B=l, S=0, C=0, b=0) адпавядае T3=Q-​1/2, што дае Т3=​1/2 для пратона (Q=l) і Т3=-​1/2 для нейтрона (Q=0), т. ч. нуклон мае 2 зарадавыя станы і ўтварае ізадублет. І.с. сістэмы адронаў захоўваецца ў моцных (ядзерных) узаемадзеяннях, а Т3 — у эл.-магн. узаемадзеяннях. Слабы І.с. характарызуе лептоны, кваркі, прамежкавыя вектарныя базоны і скалярныя базоны Хігса ў дачыненні да электраслабага ўзаемадзеяння. Для кваркаў і лептонаў прымае значэнні: 0; ​1/2. Паміж эл. зарадам Q, трэцяй праекцыяй слабага І.с. T3w і слабым гіперзарадам Y​w існуе сувязь: Q=T3w+​1/2Y​w (абагульненая ф-ла Гел-Мана—Нішыджымы). Слабы І.с. дазваляе правесці класіфікацыю лептонаў і кваркаў і дакладна вызначыць законы электраслабага ўзаемадзеяння ўсіх элементарных часціц.

Літ.:

Окунь Л.Б. Лептоны и кварки. 2 изд. М., 1990.

І.С.Сацункевіч.

т. 7, с. 177

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРАФІ́ЧНЫЯ ВЫЛІЧЭ́ННІ,

метады атрымання лікавых рашэнняў задач з дапамогай графічных пабудаванняў. Заснаваны на выкарыстанні графікаў функцый і паўтарэнні (або замене) з пэўным набліжэннем адпаведных аналітычных аперацый (складання, аднімання, множання, дзялення, дыферэнцыравання, інтэгравання і інш.). Выкарыстоўваюцца для атрымання першых набліжэнняў, якія ўдакладняюцца інш. метадамі, а таксама ў інж. практыцы, калі не патрабуецца высокая дакладнасць.

Лікі пры графічных вылічэннях алг. выразаў адлюстроўваюцца ў выбраным маштабе накіраванымі адрэзкамі. Пры графічным складанні і адніманні лікаў адпаведныя адрэзкі адкладваюць на прамой у пэўным (аднімаемае — у процілеглым) напрамку адзін за адным так, каб пачатак наступнага адрэзка супадаў з канцом папярэдняга. Сума (рознасць) — адрэзак, пачатак якога супадае з пачаткам 1-га, а канец — з канцом апошняга. Множанне і дзяленне ажыццяўляюцца будаваннем прапарцыянальных адрэзкаў, што адсякаюць на старанах вугла паралельныя прамыя, і выкарыстаннем адпаведных дачыненняў. Для графічнага ўзвядзення ў цэлую дадатную (адмоўную) ступень паслядоўна паўтараюць множанне (дзяленне). Для графічнага рашэння ўраўнення 𝑓(x) = 0 будуюць графік функцыі у = 𝑓(x) і знаходзяць яго пункты перасячэння з воссю абсцыс [пры рашэнні ўраўненняў 𝑓1(x) = 𝑓2(x) знаходзяць абсцысы пунктаў перасячэння крывых y1 = 𝑓1(x) і y2 = 𝑓2(x)]. Графічнае вылічэнне вызначанага інтэграла заснавана на замене графіка падінтэгральнай функцыі ступеньчатай ломанай, плошча пад якой лікава роўная дадзенаму інтэгралу. Для графічнага дыферэнцыравання будуецца графік вытворнай па значэннях тангенса вугла нахілу датычнай у розных пунктах графіка дадзенай функцыі. Графічнае рашэнне дыферэнцыяльнага ўраўнення dy/dx = 𝑓(x,y) зводзіцца да будавання поля напрамкаў на плоскасці: у некаторых пунктах малююць напрамкі датычнай dy/dx да інтэгральнай крывой, што праходзіць праз іх. Шуканую крывую праводзяць так, каб датычныя да яе мелі зададзеныя напрамкі. Часта папярэдне будуюць сям’ю ліній 𝑓(x,y) = C (ізаклінаў) для розных значэнняў C. У кожным пункце такой лініі вытворная пастаянная і роўная C. Гл. таксама Лікавыя метады, Набліжанае вылічэнне, Набліжанае інтэграванне.

С.У.Абламейка.

т. 5, с. 415

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗНА́КІ МАТЭМАТЫ́ЧНЫЯ,

умоўныя абазначэнні (сімвалы), якімі карыстаюцца для запісу матэм. паняццяў, суадносін, выкладак і ніш. Напр., выраз «лік тры большы за лік два» з дапамогай З.м. запісваецца як 3 > 2.

Развіццё матэм. сімволікі цесна звязана з агульным развіццём паняццяў і метадаў матэматыкі. Першымі З.м. былі лічбы — знакі для абазначэння лікаў; мяркуюць, што яны папярэднічалі ўзнікненню пісьменнасці. З.м. для абазначэння адвольных велічынь з’явіліся 5—4 ст. да н.э. ў Грэцыі. Напр., плошчы, аб’ёмы, вуглы адлюстроўваліся адрэзкамі, а здабыткі велічынь — прамавугольнікамі, пабудаванымі на такіх адрэзках. У «Асновах» Эўкліда (3 ст. да н.э.) велічыні абазначаюцца дзвюма літарамі — пачатковай і канцавой літарамі адпаведнага адрэзка, а часам і адной. Пачаткі літарнага абазначэння і злічэння ўзніклі ў познаэліністычную эпоху (Дыяфант; верагодна 3 ст.) пры вызваленні алгебры ад геам. формы. Сучасная алг. сімволіка створана ў 14—17 ст.; яе развіццё і ўдасканаленне спрыяла ўзнікненню новых раздзелаў матэматыкі (гл. напр., Аперацыйнае злічэнне, Варыяцыйнае злічэнне, Тэнзарнае злічэнне) і матэм. логікі (Алгебра логікі).

А.А.Гусак.

Асноўныя матэматычныя знакі
Знак Значэнне Кім і калі ўведзены
Знакі індывідуальных аперацый адносін, аб’ектаў
+ складанне Я.Відман, 1489
адніманне
× множанне У.Оўтрэд, 1631
множанне Г.Лейбніц, 1698
: дзяленне Г.Лейбніц, 1684
an ступень Р.Дэкарт, 1637
na корань (радыкал) А.Жырар, 1629
log лагарыфм Б.Кавальеры, 1632
sin, cos сінус, косінус Л.Эйлер, 1748
tg тангенс Л.Эйлер, 1753
dx, d​2x, ... дыферэнцыял Г.Лейбніц, 1675
y   dxy інтэграл
lim ліміт У.Гамільтан, 1853
= роўнасць Р.Рэкард, 1557
>< больш, менш Т.Гарыёт, 1631
паралельнасць У.Оўгрэд, 1677
бесканечнасць Дж.Валіс, 1655
e аснова натуральных лагарыфмаў Л.Эйлер, 1736
π адносіны даўжыні акружнасці да яе дыяметра
i уяўная адзінка −1 Л.Эйлер, 1777
i, j, k адзінкавыя вектары У.Гамільтан, 1853
f(x) Знакі пераменных аперацый і аб’ектаў функцыя Л.Эйлер, 1734
x, y, z невядомыя (пераменныя) Р.Дэкарт, 1637
a, b, c адвольныя пастаянныя
r вектар А.Кашы, 1853

т. 7, с. 99

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАМАТЭМА́ТЫКА (ад мета... + матэматыка),

раздзел матэматычнай логікі, у якім вывучаюцца асновы матэматыкі, структура і заканамернасці матэм. доказаў з дапамогай фармальных метадаў. Тэрмін «М.» ўвёў Д.Гільберт для абазначэння тэорыі, якая аналізуе структуру і ўласцівасці фармальных сістэм. У шырокім сэнсе — метатэорыя матэматыкі.

Паводле Гільберта, фармалізаваная сістэма, што атрымліваецца ў выніку фармалізацыі навук. тэорыі, даследуецца (на прадмет высвятлення яе несупярэчлівасці, паўнаты, вырашальнасці і ўзаемасувязі з інш. тэорыямі, незалежнасці яе аксіём і інш.) змястоўнымі метадамі, якія не апелююць да сэнсу яе аб’ектаў (формул). Гэта канцэпцыя (наз. фінітызм) прадугледжвае выкарыстанне канечных канструкцый («наглядных» матэм. прадметаў, эфектыўна здзяйсняльных працэсаў) і адмаўляе абстракцыю актуальнай бесканечнасці (гл. Абстракцыя). К.Гёдэль паказаў абмежаванасць фінітных (простых) метадаў для даследавання фармалізаваных тэорый; у 1931 ён даказаў тэарэму аб непаўнаце дастаткова багатых фармальных сістэм (у т.л. аксіяматычнай мностваў тэорыі і арыфметыкі натуральных лікаў) і аб немагчымасці доказу несупярэчлівасці сістэмы з дапамогай сродкаў, якія фармалізуюцца ў гэтай сістэме. Для доказу несупярэчлівасці фундаментальных матэм. тэорый сучасная М. выкарыстоўвае больш складаныя, нефінітныя метады.

Састаўная частка прадмета М. — даследаванне фармалізаваных матэм. тэорый, выкладзеных у выглядзе сімвалічных моў, і вывучэнне саміх гэтых моў. Мноства канечных паслядоўнасцей з аперацыямі над імі таксама могуць быць аб’ектамі матэм. даследавання. Гэта абумоўлівае выкарыстанне ў М. метадаў алгебры (гл. Булева алгебра), тэорыі мностваў і тапалогіі. Шырока выкарыстоўваецца ў М. гёдэлеўскі метад арыфметызацыі метатэорыі і тэорыя рэкурсіўных функцый. У больш вузкім сэнсе да М. (у адрозненне ад металогікі) адносяць пытанні сінтаксісу, прадметнай матэм. тэорыі (гл. Сінтаксіс у логіцы); семантыку вылучаюць у якасці самаст. галіны даследавання (гл. Семантыка лагічная).

Літ.:

Клини С.К. Введение в метаматематику: Пер. с англ. М., 1957;

Расёва Е., Сикорский Р. Математика метаматематики: Пер. с англ. М., 1972;

Гильберт Д., Бернайс П. Основания математики: Теория доказательств: Пер. с нем. М., 1982.

С.Ф.Дубянецкі.

т. 10, с. 308

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКСІЯМАТЫ́ЧНЫ МЕ́ТАД,

спосаб пабудовы навук. тэорыі ў выглядзе сістэмы пастулатаў (аксіём) і правіл вываду (аксіяматыкі), што дае магчымасць логікавымі разважаннямі атрымліваць сцвярджэнні (тэарэмы) дадзенай тэорыі.

Узнік у работах стараж.-грэч. матэматыкаў. Напр., у «Асновах» Эўкліда праведзена ідэя атрымання асн. зместу геаметрыі з невялікай колькасці аксіём, праўдзівасць якіх лічыцца відавочнай. Адкрыццё ў 19 ст. неэўклідавых геаметрый стымулявала ўзнікненне праблем больш агульнага характару (напр., несупярэчлівасці, паўнаты і незалежнасці той ці інш. сістэмы аксіём). Гэта адкрыла шлях да фармалізаванага развіцця тэорый: пошуку інш. сістэм паняццяў (тэорый, галін ведаў), якія падпарадкоўваюцца тым жа аксіёмам, выяўлення новых інтэрпрэтацый пэўнай сістэмы аксіём, што дало магчымасць адкрываць новыя навук. факты. Д.Гільберт і яго школа спадзяваліся на аснове аксіяматычнага метаду вырашыць гал. пытанні абгрунтавання матэматыкі. Аднак вынікі аўстр. і амер. матэматыка і логіка К.Гёдэля (1931) выявілі неажыццявімасць гэтай праграмы, напр. тэарэма аб непаўнаце арыфметыкі сведчыць аб абмежаванасці аксіяматычнага метаду. У 20 ст. дзякуючы развіццю матэматычнай логікі стала магчымым аксіяматызаваць тыя сродкі логікі, з дапамогай якіх выводзяцца адны сцвярджэнні аксіяматычнай тэорыі з інш. яе сцвярджэнняў, што мае істотнае значэнне для аўтаматызацыі разумовай працы.

Сучасныя навук. тэорыі, пабудаваныя пры дапамозе аксіяматычнага метаду, наз. дэдуктыўнымі. Усе паняцці такіх тэорый (акрамя фіксаванай колькасці першапачатковых) уводзяцца пры дапамозе вызначэнняў, якія выражаюць іх змест праз першапач. паняцці. У той ці інш. меры дэдуктыўныя доказы, характэрныя для аксіяматычнага метаду, выкарыстоўваюцца ў многіх навуках, найб. у матэматыцы, логіцы, некаторых раздзелах фізікі, біялогіі і інш. Тэорыі, пабудаваныя пры дапамозе аксіяматычнага метаду, нярэдка маюць выгляд фармалізаваных сістэм, якія даюць дакладнае апісанне лагічных сродкаў вываду тэарэм з аксіём. Доказ такой тэорыі ўяўляе сабой паслядоўнасць формул, кожная з якіх з’яўляецца аксіёмай або атрымліваецца з папярэдніх формул па адным з прынятых правіл вываду. У адрозненне ад такіх фармальных доказаў уласцівасці самой фармальнай сістэмы ў цэлым вывучаюцца змястоўнымі сродкамі метатэорыі. Асн. патрабаванні да аксіяматычных фармальных сістэм: несупярэчлівасць, паўната, незалежнасць аксіём. Аксіяматычны метад — адзін з метадаў пабудовы навук. ведаў, які мае абмежаванае выкарыстанне, бо патрабуе высокага ўзроўню развіцця навук. тэорыі. Нават некаторыя дастаткова багатыя навук. тэорыі (напр., арыфметыка натуральных лікаў) не дапускаюць поўнай аксіяматызацыі. Гэта сведчыць аб немагчымасці поўнай фармалізацыі навук. ведаў.

Літ.:

Садовский В.Н. Аксиоматический метод построения научного знания // Философские вопросы современной формальной логики. М., 1962;

Столл Р. Множества. Логика: Аксиоматич. теории.: Пер. с англ. М., 1968;

Новиков П.С. Элементы математической логики. 2 изд. М., 1973.

Р.Т.Вальвачоў, У.К.Лукашэвіч.

т. 1, с. 207

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

А́ТАМ (ад грэч. atomos непадзельны),

часціца рэчыва, найменшая частка хім. элемента, якая з’яўляецца носьбітам яго ўласцівасцяў. Кожнаму элементу адпавядае пэўны род атама, якія абазначаюцца сімвалам хім. элемента і існуюць у свабодным стане або ў злучэнні з інш. атамамі, у складзе малекул. Разнастайнасць хім. злучэнняў абумоўлена рознымі спалучэннямі атамаў у малекулах. Фіз. і хім. ўласцівасці свабоднага атама вызначаюцца яго будовай. Атам мае дадатна зараджанае цэнтр. атамнае ядро і адмоўна зараджаныя электроны і падпарадкоўваецца законам квантавай механікі.

Асн. характарыстыка атама, што абумоўлівае яго прыналежнасць да пэўнага элемента, — зарад ядра, роўны +Ze, дзе Z = 1, 2, 3, ... — атамны нумар элемента, e — элементарны эл. зарад. Ядро з зарадам +Ze утрымлівае вакол сябе Z электронаў з агульным зарадам -Ze. У цэлым атам электранейтральны. Пры страце электронаў ён ператвараецца ў дадатна зараджаны іон. Маса атама ў асноўным вызначаецца масай ядра і прапарцыянальная яго атамнай масе, якая прыблізна роўная масаваму ліку. Пры яго павелічэнні ад 1 (для атама вадароду, Z = 1) да 250 (для атама трансуранавых элементаў, Z>92) маса атама мяняецца ад 1,67·10​−27 да 4·10​−25 кг. Памеры ядра (парадку 10​−14—10​−15 м) вельмі малыя ў параўнанні з памерамі ўсяго атама (10​−10 м). Паводле квантавай тэорыі, для электронаў у атаме магчымы толькі пэўныя (дыскрэтныя) значэнні энергіі, якія для атама вадароду і вадародападобных іонаў вызначаюцца формулай En = hcR Z2 n2 , дзе h — Планка пастаянная, c — скорасць святла, R — Рыдберга пастаянная, n = 1, 2, 3 ... цэлы лік, які вызначае магчымае значэнне энергіі і наз. галоўным квантавым лікам. Велічыня hcR=13,60 эВ ёсць энергія іанізацыі атама вадароду, г. зн. энергія, неабходная на тое, каб перавесці электрон з асн. ўзроўню (n=1) на ўзровень n=∞, што адпавядае адрыву электрона ад ядра. Электроны ў атаме пераходзяць з аднаго ўзроўню энергіі на другі паводле квантавага закону EiEk=. Кожнаму значэнню энергіі адпавядае 2n​2 розных квантавых станаў, што адрозніваюцца значэннямі трох дыскрэтных фізічных велічыняў: арбітальнага моманту імпульсу Me, яго праекцыі Mez на некаторы напрамак z і праекцыі (на той жа напрамак) спінавага моманту імпульсу Msz. Me вызначаецца азімутальным квантавым лікам 1, які прымае n значэнняў (1=0, 1, 2 ..., n-1); Mez — арбітальным магнітным квантавым лікам me, які прымае 21+1 значэнняў (m1 = 1, 1-1, ..., -1); Msz спінавым магнітным квантавым лікам ms, які мае значэнні ½ і −½ (гл. Спін, Квантавыя лікі). Агульны лік станаў з аднолькавай энергіяй (зададзена n) наз. ступенню выраджэння ці статыстычнай вагой. Для атама вадароду і вадародападобных іонаў ступень выраджэння ўзроўняў энергіі gn=2n2. Зададзенаму набору квантавых лікаў n, 1, me адпавядае пэўнае размеркаванне электроннай шчыльнасці (імавернасці знаходжання электрона ў розных месцах атама). Паводле Паўлі прынцыпу, у атаме не можа быць двух (або больш) электронаў у аднолькавым стане, таму максімальны лік электронаў у атаме з зададзенымі n і 1 роўны 2 (21 + 1). Электроны ўтвараюць электронную абалонку атама і цалкам яе запаўняюць. На аснове ўяўлення пра паступовае запаўненне, з павелічэннем Z, усё больш аддаленых ад ядра электронных абалонак можна растлумачыць перыядычнасць хім. і фіз. уласцівасцяў элементаў. Гл. таксама Перыядычная сістэма элементаў Мендзялеева.

Літ.:

Шпольский Э.В. Атомная физика. Т. 1—2. М., 1984;

Борн М. Атомная физика. М., 1970;

Гольдин Л.Л., Новикова Г.И. Введение в квантовую физику. М., 1988;

Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 3. Квантовая механика;

Нерелятивистская теория. 4 изд. М., 1989.

М.А.Ельяшэвіч.

т. 2, с. 66

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)