МЕТАМАТЭМА́ТЫКА
(ад мета... + матэматыка),
раздзел матэматычнай логікі, у якім вывучаюцца асновы матэматыкі, структура і заканамернасці матэм. доказаў з дапамогай фармальных метадаў. Тэрмін «М.» ўвёў Д.Гільберт для абазначэння тэорыі, якая аналізуе структуру і ўласцівасці фармальных сістэм. У шырокім сэнсе — метатэорыя матэматыкі.
Паводле Гільберта, фармалізаваная сістэма, што атрымліваецца ў выніку фармалізацыі навук. тэорыі, даследуецца (на прадмет высвятлення яе несупярэчлівасці, паўнаты, вырашальнасці і ўзаемасувязі з інш. тэорыямі, незалежнасці яе аксіём і інш.) змястоўнымі метадамі, якія не апелююць да сэнсу яе аб’ектаў (формул). Гэта канцэпцыя (наз. фінітызм) прадугледжвае выкарыстанне канечных канструкцый («наглядных» матэм. прадметаў, эфектыўна здзяйсняльных працэсаў) і адмаўляе абстракцыю актуальнай бесканечнасці (гл. Абстракцыя). К.Гёдэль паказаў абмежаванасць фінітных (простых) метадаў для даследавання фармалізаваных тэорый; у 1931 ён даказаў тэарэму аб непаўнаце дастаткова багатых фармальных сістэм (у т.л. аксіяматычнай мностваў тэорыі і арыфметыкі натуральных лікаў) і аб немагчымасці доказу несупярэчлівасці сістэмы з дапамогай сродкаў, якія фармалізуюцца ў гэтай сістэме. Для доказу несупярэчлівасці фундаментальных матэм. тэорый сучасная М. выкарыстоўвае больш складаныя, нефінітныя метады.
Састаўная частка прадмета М. — даследаванне фармалізаваных матэм. тэорый, выкладзеных у выглядзе сімвалічных моў, і вывучэнне саміх гэтых моў. Мноства канечных паслядоўнасцей з аперацыямі над імі таксама могуць быць аб’ектамі матэм. даследавання. Гэта абумоўлівае выкарыстанне ў М. метадаў алгебры (гл. Булева алгебра), тэорыі мностваў і тапалогіі. Шырока выкарыстоўваецца ў М. гёдэлеўскі метад арыфметызацыі метатэорыі і тэорыя рэкурсіўных функцый. У больш вузкім сэнсе да М. (у адрозненне ад металогікі) адносяць пытанні сінтаксісу, прадметнай матэм. тэорыі (гл. Сінтаксіс у логіцы); семантыку вылучаюць у якасці самаст. галіны даследавання (гл. Семантыка лагічная).
Літ.:
Клини С.К. Введение в метаматематику: Пер. с англ. М., 1957;
Расёва Е., Сикорский Р. Математика метаматематики: Пер. с англ. М., 1972;
Гильберт Д., Бернайс П. Основания математики: Теория доказательств: Пер. с нем. М., 1982.
С.Ф.Дубянецкі.
т. 10, с. 308
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)