АДЧУВА́ЛЬНАСЦЬ

(фізіял.),

1) здольнасць жывых арганізмаў успрымаць раздражненні, якія зыходзяць з вонкавага і ўнутр. асяроддзя. Стварае магчымасць для фарміравання адаптыўных рэакцый. Адрозніваюць віды адчувальнасці: тэмпературную, смакавую, светлавую, скурную і інш. У ходзе эвалюцыі ў чалавека і жывёл фарміруюцца спецыялізаваныя нерв. ўтварэнні (рэцэптары), прыстасаваныя да ўспрымання вызначанага віду раздражнення (механарэцэптары, хемарэцэптары, фотарэцэптары і інш.) у межах парога адчувальнасці. Узбуджальнасць рэцэптараў няўстойлівая і залежыць ад іх стану і адпаведнай настройкі цэнтр. нерв. сістэмы.

2) У дыферэнцыяльнай псіхалогіі — павышаная гатоўнасць да эфектыўных рэакцый.

3) У псіхафізіцывелічыня, адваротна прапарцыянальная парогу адчування (чым ніжэй парог, тым вышэй адчувальнасць). Адпаведна адрозніваюць абсалютную і дыферэнцыяльную (рознасную) адчувальнасць. Выкарыстанне новых тэарэт. уяўленняў (тэорыі выяўлення сігналаў) у псіхафізіцы спрыяла ўзнікненню больш абагульненых вызначэнняў адчувальнасці, незалежных ад паняцця парог адчування.

т. 1, с. 140

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКСІЯ́ЛЬНА-ПО́РШНЕВАЯ ПО́МПА,

помпа ротарнага тыпу з вярчальным рухам ротара і зваротна-паступальным рухам поршняў (звычайна 7—9). Прызначана для нагнятання мінер. масла ў гідрасістэмы станкоў, транспартна-цягавых машын і абсталявання. Можа выкарыстоўвацца як гідраўлічны рухавік.

Пры вярчэнні ротара галоўкі поршняў слізгаюць па апорнай шайбе (пліце) і рухаюцца адносна ротара ўздоўж яго восі. Велічыня падачы масла вызначаецца рухам поршняў. Масла ўсмоктваецца і нагнятаецца праз размеркавальны дыск, злучаны каналамі з масляным бакам. Прадукцыйнасць да 800 л/мін, ціск да 30 МПа, аб’ёмны ккдз да 0,96.

Падоўжны разрэз аксіяльна-поршневай помпы з нахіленым дыскам (шайбай): 1 — корпус; 2 — блок цыліндраў; 3 — поршань; 4 — нахілены дыск (шайба); 5 — вал; 6 — поласць усмоктвання; 7 — палец (стрыжань); 8 — залатнік; 9 — поласць нагнятання.

т. 1, с. 207

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДЗЕ́ЯННЕ ў фізіцы, фізічная велічыня, якая мае размернасць здабытку энергіі на час (або імпульсу на перамяшчэнне); адна з найважнейшых характарыстык дыскрэтных мех. сістэм.

У залежнасці ад выбранай фармулёўкі варыяцыйных прынцыпаў механікі выкарыстоўваюцца 2 вызначэнні Дз.: паводле Гамільтана S = S t0 t L d t і паводле Лагранжа W = S t0 t 2 T d t , дзе L=TU — функцыя Лагранжа, T і U — кінетычная і патэнцыяльная энергіі сістэмы адпаведна, tt0 — прамежак часу, праз які мех. сістэма пераходзіць з пачатковага ў адвольны, залежны ад часу стан сістэмы. Паняцце «Дз.» выкарыстоўваецца ў аналітычнай механіцы, а пры адпаведных абагульненнях у тэорыі пругкасці, электра- і тэрмадынаміцы, квантавай механіцы і тэорыі поля. Гл. таксама Найменшага дзеяння прынцып.

А.І.Болсун.

т. 6, с. 109

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАЛЕ́НТНАСЦЬ

(ад лац. valentia сіла),

здольнасць атама хім. элемента ўтвараць пэўную колькасць хімічных сувязяў з інш. атамамі. Паняцце «валентнасць» увёў англ. хімік Э.Франкленд (1853). Велічыня валентнасці атама хім. элемента вызначаецца колькасцю атамаў вадароду (прынята лічыць аднавалентным), якія ён далучае пры ўтварэнні гідрыдаў (злучэнні з вадародам). Напр., атам хлору далучае 1 атам вадароду (хлорысты вадарод HCl), атам кіслароду — 2 атамы (вада H2O), таму валентнасць хлору і кіслароду ў гэтых злучэннях адпаведна 1 і 2. Паняцце «валентнасць» атрымала развіццё ў квантава-хім. тэорыі хім. сувязі. Паводле гэтай тэорыі велічыня валентнеасці атама (спін-валентнасць) вызначаецца колькасцю электронных пар, якія фарміруюцца пры ўтварэнні хім. сувязяў паміж дадзеным і інш. атамамі за кошт абагульнення іх электронаў з няспаранымі спінамі. Электроны атама, якія могуць удзельнічаць у фарміраванні агульных электронных пар, наз. валентнымі (электроны вонкавых электронных слаёў). У атамах элементаў з недабудаваным перадапошнім слоем (напр., у атамаў жалеза Fe, марганцу Mn, вальфраму W) валентнымі могуць быць і некаторыя электроны гэтага слоя. Многія элементы маюць пераменную валентнасць (напр., у серавадародзе H2S, аксідах SO2 і SO3 валентнасць серы адпаведна 2, 4, 6).

Валентнасць вызначаецца толькі колькасцю кавалентных сувязяў. Для злучэнняў з іоннай сувяззю выкарыстоўваецца паняцце акіслення ступень, якая колькасна роўная валентнасці, але дадаткова характарызуецца дадатным ці адмоўным знакам. У комплексных злучэннях і іонных крышталях каардынацыйны лік атамаў (іонаў) перавышае велічыню спін-валентнасці, таму карыстаюцца паняццем каардынацыйнай валентнасці, якая колькасна роўная суме спін-валентнасці і колькасці атамаў (іонаў), дадаткова звязаных з валентнанасычаным атамам. Напр., у комплексным злучэнні гексафтораалюмінат (III) натрыю Na3[AlF6] спін-валентнасць атама алюмінію 3, ступень акіслення +3, але пры ўтварэнні злучэння з AlF3 і NaF атам валентнанасычанага Al дадаткова хімічна звязваецца з 3 іонамі F​-, таму каардынацыйная валентнасць алюмінію ў гэтым злучэнні 6. Гл. таксама Комплексныя злучэнні, Малекула, Крышталі.

Літ.:

Чаркин О.П. Проблемы теории валентности, химической связи, молекулярной структуры. М., 1987.

В.В.Свірыдаў.

т. 3, с. 479

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕНЕТЫ́ЧНАЯ КА́РТА ХРАМАСО́М,

графічнае адлюстраванне адноснага размяшчэння генаў унутры (у межах) адной храмасомы. Для складання такой карты неабходна выяўленне многіх мутантных генаў і правядзенне вял. колькасці скрыжаванняў. На карце наносяць адноснае становішча генаў, якія знаходзяцца ў адной групе счаплення. Адлегласць паміж генамі вызначаюць па частаце кросінговера (велічыня перакрыжавання храмасом) для кожнай пары гамалагічных храмасом. Яе адзінка — марганіда, якая адпавядае 1% кросінговера. Генетычныя карты храмасом складзены для дразафілы (у ёй выяўлена больш за 1000 мутантных генаў), кукурузы (у 10 групах счаплення больш 400 генаў), памідораў, нейраспоры і інш. Звычайна генетычныя карты храмасом у эўкарыётаў лінейныя, бываюць і ў форме крыжа. Пры карціраванні генаў у бактэрый з дапамогай кан’югацыі атрымліваюць кальцавую генетычную карту храмасом. Генетычныя карты храмасом дазваляюць планаваць работу па атрыманні арганізмаў з вызначанымі спалучэннямі прыкмет, што выкарыстоўваецца ў генет. эксперыментах і селекцыйнай практыцы.

Э.В.Крупнова.

т. 5, с. 157

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВОДАСПАЖЫВА́ННЕ,

1) расходаванне вады на патрэбы насельніцтва, прам-сці і інш. водакарыстальнікаў. Вада на водаспажыванне адбіраецца з воднага аб’екта беззваротна або вяртаецца, змененая якасна. Адрозніваюць водаспажыванне гасп.-пітное і камунальнае (для быт. мэт) і тэхн. або вытв. (для тэхнал. мэт прам-сці, энергетыкі, транспарту). Аб’ём водаспажывання залежыць ад нормы водаспажывання — удзельнага расходу вады за суткі 1 жыхаром або ўмоўнай адзінкай для дадзенай вытв-сці. У меліярацыі водаспажыванне — расходаванне вады на арашэнне, абвадненне пашы, водазабеспячэнне сельскіх нас. пунктаў, с.-г. комплексаў, на проціпажарныя і прыродаахоўныя мерапрыемствы, рыбныя гаспадаркі і інш. 2) Колькасць вады, неабходная для с.-г. культур ці севазвароту за пэўны час, каб забяспечыць нармальнае развіццё раслін. Велічыня водаспажывання адпавядае сумарнаму расходаванню вады на транспірацыю раслінамі і фіз. выпарэнне з паверхні глебы. У такім выпадку водаспажыванне разлічваецца таксама і для дзікарослых раслін.

А.А.Макарэвіч.

т. 4, с. 250

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРАВІТАЦЫ́ЙНАЯ ПАСТАЯ́ННАЯ,

1) універсальная (кавендышава, ньютанава) гравітацыйная пастаянная — каэфіцыент прапарцыянальнасці ў законе прыцягнення Ньютана (гл. Сусветнага прыцягнення закон); адна з фундаментальных фіз. пастаянных. Абазначаецца G. Вызначана эксперыментальна Г.Кавендышам (1798) пры дапамозе круцільных вагаў. Характарызуе гравітацыйнае ўзаемадзеянне ўсіх матэрыяльных аб’ектаў (часціц і палёў) і разглядаецца як універсальная канстанта, нязменная ў часе і прасторы, незалежная ад фіз. і хім. уласцівасцей асяроддзя і гравітуючых мас. G = (6,67259 ±0,00085)·10​-11 Н·м²/кг2.

2) Гаўсава гравітацыйная пастаянная — велічыня k, звязаная з універсальнай гравітацыйнай пастаяннай суадносінамі G = k​2. Служыць для вызначэння астранамічнай адзінкі, у сістэме фундаментальных астранамічных пастаянных прынятая ў якасці адзінай асн. (умоўна нязменнай) пастаяннай (1976). Лікавае значэнне k = 0,01720209895 вызначана К.Гаўсам (1809) на аснове 3-га закона Кеплера (гл. Кеплера законы) для сістэмы Сонца—Зямля і зацверджана Міжнар. астранамічным саюзам у якасці абсалютна дакладнай канстанты (1938).

М.М.Касцюковіч.

т. 5, с. 383

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫДА́ТКІ ВЫТВО́РЧАСЦІ,

сукупныя затраты жывой і арэчаўленай працы на вытворчасць прадукту. Ва ўмовах таварна-грашовых адносін выступаюць у вартаснай (грашовай) форме. Адрозніваюць грамадскія выдаткі вытворчасці (уключаюць перанесеную вартасць выкарыстаных сродкаў вытв-сці і ўсю зноў створаную вартасць, раўняюцца кошту тавару і служаць аб’ектыўнай асновай планавых цэн) і грашовыя затраты прадпрыемстваў на вытворчасць тавараў (яны меншыя за іх вартасць, выступаюць у форме сабекошту прадукцыі, які ўключае выдаткі на спажытыя матэрыяльныя рэсурсы, аплату працы работнікаў, расходы па збыце і рэалізацыі прадукцыі). Велічыня грамадскіх выдаткаў вытворчасці залежыць ад эфектыўнасці сродкаў працы і ад прадукцыйнасці працы. Чым вышэйшая эфектыўнасць сродкаў працы і яе прадукцыйнасць, тым меншыя выдаткі грамадства на выраб прадукту. Зніжэнне выдаткаў прадпрыемства дасягаецца шляхам павышэння прадукцыйнасці працы, лепшага выкарыстання сыравіны, матэрыялаў і асн. вытв. фондаў, паглыблення спецыялізацыі і кааперавання, развіцця камбінавання. Важнейшымі фактарамі зніжэння выдаткаў вытворчасці прадпрыемства з’яўляюцца ўдасканаленне гасп. механізма, пераход да эканам. метадаў кіравання, ліквідацыя безгаспадарчасці.

т. 4, с. 305

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРУДНА́Я КЛЕ́ТКА,

аснова груднога аддзела тулава ў паўзуноў, птушак, млекакормячых жывёл і чалавека, складзеная з грудных пазванкоў, рэбраў і грудзіны; частка восевага шкілета амніётаў. З’явілася ўпершыню ў паўзуноў у сувязі з прагрэсіўным развіццём органаў апоры (апора плечавога пояса) і дыхання. У чалавека мае форму ўсечанага конуса, сплюшчанага ў пярэднезаднім напрамку, які мае верхнюю і ніжнюю апертуры. Плоскасць верхняй апертуры нахілена ўперад, таму пярэдні край яе знаходзіцца ніжэй за задні. Ніжняя апертура абмежавана рэбернай дугой і закрыта дыяфрагмай. Міжрэберныя прамежкі запоўнены мышцамі. Велічыня акружнасці грудной клеткі (вымяраецца на ўзроўні саскоў) характарызуе склад цела чалавека. Пры ўдыху грудная клетка расшыраецца. Выгляд і памеры яе залежаць ад спосабу жыцця, рухаў, дыхання; маюць узроставыя, палавыя, індывід. і прафес. адрозненні. Змены грудной клеткі бываюць у выглядзе прыроджаных і набытых, сіметрычных і асіметрычных дэфармацый, ад пухлінных, дыспластычных, дыстрафічных працэсаў і пашкоджанняў, што ўплывае на функцыянаванне грудной клеткі.

А.С.Манцюк.

т. 5, с. 453

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫМЯРА́ЛЬНЫЯ ПРЫЛА́ДЫ,

сродкі вымярэння, якія даюць магчымасць непасрэдна адлічваць (рэгістраваць) значэнне велічыні, што вымяраецца.

Паводле прызначэння падзяляюцца на электравымяральныя прылады, цеплатэхнічныя прылады, метэаралагічныя прылады, гідралагічныя прылады, актынаметрычныя (актынометры, піргеліёметры, альбедометры, балансамеры), астранамічныя інструменты і прылады, геадэзічныя прылады і інструменты, акустычныя (фазометры, шумамеры, акустычныя інтэрферометры і інш.), метралагічныя (эталонныя) прылады для градуіроўкі і праверкі рабочых вымяральных прылад (напр., квантавы гадзіннік, гл. таксама Метралогія), прылады для вымярэння часу (гадзіннік, гадзіннік астранамічны), вуглавых і лінейных скарасцей і паскарэнняў (акселерометры, тахометры, спідометры), радыётэхн. вымяральныя прылады (асцылограф, частатамер і інш.), спец. прылады (авіяцыйныя, карабельныя і інш., напр., вышынямер, гіракомпас). Пашыраны і камбінаваныя вымяральныя прылады, якія вымяраюць некалькі велічынь (ампервальтомметр і інш.). Паводле формы атрымання інфармацыі вымяральныя прылады бываюць аналагавыя (значэнне велічыні паказваецца на шкале) і лічбавыя (на спец. індыкатары), з візуальным адлічваннем і самапісныя (барографы, тэрмографы, індыкатары ціску, лічбавыя друкавальныя хранографы). Пашыраны інтэгральныя вымяральныя прылады, якія даюць сумарнае значэнне велічыні за пэўны час (напр., лічыльнікі электрычныя, расхадамеры). Адрозніваюць таксама вымяральныя прылады аўтаматычныя і ручнога кіравання. Найб. пашыраны вымяральныя прылады прамога дзеяння (прамога пераўтварэння) і прылады параўнання, у якіх велічыня, што вымяраецца, параўноўваецца з адпаведнай мерай (вагі, патэнцыёметры).

У.М.Сацута.

т. 4, с. 315

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)