МАГНІТАФО́Н (ад магніт + ...фон),

апарат для магн. гуказапісу на магнітную стужку ці інш. носьбіт і наступнага ўзнаўлення гуку. Бывае адна- і шматдарожкавы, мона- і стэрэафанічны. Існуюць таксама спалучэнні М. з інш. апаратамі (напр. магнітола).

Адрозніваюць прафесійны (напр., для сінхроннага гуказапісу пры кіназдымцы), студыйны для высакаякаснага гуказапісу, паўпрафесійны (напр., для запісу дыспетчарскіх перагавораў), бытавы для аматарскага гуказапісу і спецыяльны (напр., геамагнітафон, дыктафон); стацыянарны і партатыўны; шпульны і касетны і інш. Мае блок сілкавання, стужкапрацяжны механізм, узмацняльнікі запісу і ўзнаўлення сігналаў, магн. галоўкі, з дапамогай якіх гэтыя сігналы перадаюцца на гуканосьбіт і наадварот, і акустычную сістэму. М. без узмацняльніка магутнасці і акустычнай сістэмы наз. магнітафоннай прыстаўкай і прызначаецца для спалучэння з інш. апаратамі. Гл. таксама Відэамагнітафон.

т. 9, с. 479

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДЧУВА́ЛЬНАСЦЬ (фізіял.),

1) здольнасць жывых арганізмаў успрымаць раздражненні, якія зыходзяць з вонкавага і ўнутр. асяроддзя. Стварае магчымасць для фарміравання адаптыўных рэакцый. Адрозніваюць віды адчувальнасці: тэмпературную, смакавую, светлавую, скурную і інш. У ходзе эвалюцыі ў чалавека і жывёл фарміруюцца спецыялізаваныя нерв. ўтварэнні (рэцэптары), прыстасаваныя да ўспрымання вызначанага віду раздражнення (механарэцэптары, хемарэцэптары, фотарэцэптары і інш.) у межах парога адчувальнасці. Узбуджальнасць рэцэптараў няўстойлівая і залежыць ад іх стану і адпаведнай настройкі цэнтр. нерв. сістэмы.

2) У дыферэнцыяльнай псіхалогіі — павышаная гатоўнасць да эфектыўных рэакцый.

3) У псіхафізіцы — велічыня, адваротна прапарцыянальная парогу адчування (чым ніжэй парог, тым вышэй адчувальнасць). Адпаведна адрозніваюць абсалютную і дыферэнцыяльную (рознасную) адчувальнасць. Выкарыстанне новых тэарэт. уяўленняў (тэорыі выяўлення сігналаў) у псіхафізіцы спрыяла ўзнікненню больш абагульненых вызначэнняў адчувальнасці, незалежных ад паняцця парог адчування.

т. 1, с. 140

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯКАМУНІКА́ЦЫЯ (ад бія... + камунікацыя),

сувязі паміж асобінамі аднаго або розных відаў жывёл, якія складаюцца праз перадачу і прыём сігналаў, што ўтвараюцца імі. Адрозніваюць сігналы спецыфічныя — хім., мех., аптычныя, акустычныя, эл. і інш. і неспецыфічныя, якія спадарожнічаюць жыццядзейнасці жывёл, успрымаюцца органамі зроку, слыху, нюху, смаку, дотыку, бакавой лініі, тэрма- і электрарэцэптарамі. Інфармацыя, якая паступае па розных каналах сувязі, перапрацоўваецца нерв. сістэмай, дзе фарміруецца рэакцыя арганізма ў адказ. Біякамунікацыя аблягчае пошукі ежы і спрыяльных умоў жыцця, ахову ад ворагаў і шкодных уздзеянняў, сустрэчу асобін рознага полу (асабліва ў перыяд размнажэння), узаемадзеянне дарослых і моладзі, фарміраванне груп (чарод, зграй, статкаў, калоній і інш.) і рэгуляцыю адносін паміж асобінамі ўнутры іх (тэр. паводзіны, іерархія і інш.). Кожны від жывёл мае свой арсенал біякамунікацыі, які перадаецца ў спадчыну.

т. 3, с. 169

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НАВІГАЦЫ́ЙНЫЯ ПРЫЛА́ДЫ,

прылады для вымярэння параметраў руху судна, лятальнага апарата (ЛА), інш. рухомых аб’ектаў, для вызначэння месцазнаходжання і кіравання імі; адзін с тэхн. сродкаў навігацыі.

Бываюць: аўтаномныя (дзейнічаюць без прыёму сігналаў ад знешніх крыніц) і неаўтаномныя (устанаўліваюцца на рухомым аб’екце, вызначаюць навігацыйныя параметры па сігналах наземных, марскіх, паветр. і касм. установак); паводле прынцыпу дзеяння — гіраскапічныя, магн., гідраўл., радыётэхн., гідраакустычныя, інерцыйныя, аптычныя, інфрачырвоныя, механічныя. Да Н.п. адносяцца авіягарызонты, авіякомпасы, аўтапілоты, аўтарулявыя, аўташтурманы, вышынямеры, компасы, у т.л. гіракомпасы, курсографы, лагі, лоты, у т.л. рэхалоты, пеленгатары, секстанты, хранометры, гіравертыкалі, нахіламеры, аўтапракладчыкі, вымяральнікі скорасці ЛА, прыёмаіндыкатары радыёнавігацыйных і гідраакустычных сістэм (прызначаны для вызначэння напрамкаў на перадаючыя станцыі, вымярэння адлегласцей да іх і атрымання па гэтых даных каардынат аб’екта з дапамогай ЭВМ або табліц і спец. карт).

В.В.Латушкін, П.М.Шумскі.

т. 11, с. 104

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРААКУ́СТЫКА (ад гідра... + акустыка),

раздзел акустыкі, які вывучае распаўсюджванне гуку ў водным асяроддзі. Гідраакустыка ўключае тэарэт. даследаванні па прагназаванні структуры акустычных палёў, вывучэнне заканамернасцей распаўсюджвання гуку ў воднай прасторы для розных раёнаў Сусветнага акіяна, распрацоўку метадаў і сродкаў вымярэння параметраў гукавых палёў, эксперым. натурныя даследаванні.

Гукавыя хвалі ў водным асяроддзі распаўсюджваюцца на значныя адлегласці (напр., у дыяпазоне частот 500—2000 Гц далёкасць распаўсюджвання пад вадой гуку сярэдняй інтэнсіўнасці дасягае 15—20 км, у дыяпазоне ультрагуку — 3—5 км). Далёкасць распаўсюджвання акустычных імпульсаў у моры і акіяне абмяжоўваецца рэфракцыяй гуку (скрыўленнем шляху гукавога праменя) і наяўнасцю лакальных неаднароднасцей (часцінак, бурбалачак паветра і інш.), на якіх яны рассейваюцца і паглынаюцца. Скорасць гуку залежыць у асноўным ад гідрастатычнага ціску і слаістасці, абумоўленай размеркаваннем т-ры і салёнасці вады па глыбіні (мяняецца ў межах 1450—1540 м/с). З гэтай прычыны акустычныя хвалі могуць пераламляцца, а ў асобных выпадках на пэўнай глыбіні з’яўляюцца каналы звышдалёкага распаўсюджвання гуку (да тысяч км). Зменлівасць асяроддзя, яго неаднароднасць, наяўнасць межаў з непрадказальнымі характарыстыкамі, разнастайнасць фіз. працэсаў у водным асяроддзі — аб’ектыўныя фактары, якія ўскладняюць карэктнае апісанне працэсу распаўсюджвання гуку ў вадзе і стварэнне адэкватнай яму мадэлі. Прыкладная гідраакустыка займаецца распрацоўкай гідраакустычных прылад. Найб. пашыраны рэхалоты, гідралакатары, шумапеленгатары і інш. Яны выкарыстоўваюцца для даследавання акіяна, у навігацыйных мэтах, для рыбапрамысловай разведкі, пошукавых работ, вырашэння ваенных задач (пошукі падводных лодак праціўніка, бесперыскопная тарпедная атака і інш.). Распрацаваны і створаны мнагамэтавыя вымяральна-вылічальныя комплексы (вымярэнне часавых параметраў акустычных сігналаў, аналіз структуры шматпрамянёвых сігналаў і часавай стабільнасці характарыстык трас распаўсюджвання гуку працягласцю да некалькіх соцень кіламетраў).

На Беларусі даследаванні па гідраакустыцы вядуцца з 1971 у НДІ прыкладных фіз. праблем пры БДУ.

Літ.:

Урик Р.Д. Основы гидроакустики: Пер. с англ. Л., 1978;

Клей К., Медвин Г. Акустическая океанография: Пер. с англ. М., 1980.

А.Ф.Чарняўскі.

т. 5, с. 221

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЕЙРАГУМАРА́ЛЬНАЯ РЭГУЛЯ́ЦЫЯ,

шматэтапная сістэма кіравання, што каардынуе і інтэгруе дзеянне нерв. сістэмы і гумаральных фактараў крыві, лімфы, тканкавай вадкасці на фізіял. працэсы ў арганізме жывёл і чалавека. Падтрымлівае адноснае пастаянства ўнутр. асяроддзя арганізма (гамеастаз) і яго прыстасаванасць да ўмоў існавання. Мае нерв. механізмы вядучых звёнаў рэгуляцыі і хім. рэчывы (гармоны, медыятары, метабаліты) для перадачы сігналаў паміж клеткамі і ўнутры клетак. Складаецца з кіравання (працэсы, што адбываюцца ў нерв. элементах), сінтэзу (утварэнне малекул гумаральнага рэгулятара ў сакраторных клетках), сакрэцыі (выдзяленне гумаральнага рэгулятара з клетак у кроў), транспарту (перанос малекул па крыві, лімфе і міжклетачнай вадкасці), эфекту (узаемадзеянне гумаральнага рэгулятара з клетачнымі рэактыўнымі сістэмамі, што выклікае пэўныя метабалічныя і функцыян. змены ў клетках органа-мішэні), метабалізму (біяхім. пераўтварэнні малекул гумаральнага рэгулятара і вывядзенне з арганізма).

Літ.:

Акмаев И.Г. Структурные основы механизмов гипоталамической регуляции эндокринных функций. М., 1979;

Основы физиологии человека. Т. 1—2. СПб., 1994.

А.С.Леанцюк.

т. 11, с. 273

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЕЙРО́ННАЯ СЕ́ТКА,

сукупнасць штучных нейронных элементаў і сувязей паміж імі. Структура Н.с. запазычана ў біял. аб’ектаў, мае здольнасць да навучання і дазваляе мадэліраваць разумовыя працэсы жывой матэрыі. З Н.с. звязваюць перспектывы развіцця выліч. тэхнікі, сістэм кіравання і інш.

Складаецца з штучных нейронных элементаў (гл. Нейрон), якія злучаны сінаптычнымі сувязямі і выконваюць аперацыю нелінейнага пераўтварэння сумы здабыткаў уваходных сігналаў на іх вагавыя каэфіцыенты. Самаарганізацыя і прыстасавальнасць Н.с. дасягаецца ў працэсе яе навучання, у выніку чаго ўдакладняюцца сінаптычныя сувязі паміж яе элементамі. Правілы навучання вызначаюць залежнасці вагавых каэфіцыентаў ад уваходных уздзеянняў. Асаблівасць Н.с. — здольнасць карэктна функцыянаваць пры паступленні даных, якія не ўваходзілі ў навуч. выбарку (здольнасць да абагульнення).

На Беларусі даследаванні па праблемах Н.с. вядуцца ў Ін-це тэхн. кібернетыкі Нац. АН, БДУ, Бел. ун-це інфарматыкі і радыёэлектронікі, Брэсцкім політэхн. ін-це і інш. Для каардынацыі работы ў гэтай галіне створана бел. аддзяленне Міжнар. т-ва Н.с. (г. Брэст).

Літ.:

Головко В.А. Нейроинтеллект теория и применение. Кн. 1—2. Брест, 1999.

У.А.Галаўко, А.А.Дудкін.

т. 11, с. 275

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПТЫ́ЧНАЯ СУ́ВЯЗЬ,

перадача інфармацыі з дапамогай эл.-магн. хваляў аптычнага дыяпазону (10​14—10​15 Гц). Першая лінія аптычнага тэлеграфа пабудавана ў 1794 паміж Парыжам і Лілем (225 км). Стварэнне лазераў, святлодыёдаў, фотапрыёмнікаў, валаконна-аптычных кабеляў з надзвычай малымі стратамі дало магчымасць стварыць аптычную сувязь, якая мае перавагу над інш. відамі сувязі па колькасці каналаў (вял. Прапускная здольнасць), ахове ад перашкод, далёкасці і хуткасці перадачы, па эканоміі металу (металу (медзі, алюмінію), па рэальнасці стварэння інтэгральных і інтэлектуальных сетак сувязі.

Для мадуляцыі лазернага выпрамянення ўздзейнічаюць на працэс яго генерацыі або выкарыстоўваюць мадулятар святла. На выхадзе перадатчыка фарміруецца вузкі маларазбежны прамень святла; трапляючы на ўваход прыёмніка, ён накіроўваецца на фотадэтэктар, дзе аптычнае выпрамяненне пераўтвараецца ў эл. сігнал, які ўзмацняецца і апрацоўваецца звычайнымі радыётэхн. Метадамі. Адрозніваюць аптычную сувязь з адкрытымі лініямі (для перадачы сігналаў праз атмасферу Зямлі ці касм. прастору) і з закрытымі святлаводнымі каналамі (валаконна-аптычныя лініі сувязі; выкарыстоўваюцца ў наземных і падводных умовах).

Літ.:

Алишев Я.В. Многоканальные системы передачи оптического диапазона. Мн., 1986;

Волоконно-оптические системы передачи. М., 1992.

Я.В.Алішаў.

т. 1, с. 438

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕ́НТЫЛЬ (ад ням. Ventil клапан),

1) вентыль трубаправодны — запорнае прыстасаванне для ўключэння і выключэння ўчастка трубаправода, рэгулявання патокаў вадкасці, газу ці пары. Вялікія вентылі злучаюцца з трубамі, помпамі і інш. спец. фланцамі, малыя — з дапамогай разьбы.

2) вентыль электрычны — эл. прылада, праводнасць якой у адным напрамку на адзін або некалькі парадкаў вышэй, чым у процілеглым. Выкарыстоўваецца ў выпрамніках, інвертарах, пераўтваральніках частаты, камутацыйных прыстасаваннях і інш. Бываюць электралітычныя, газаразрадныя (у т. л. ртутныя), электравакуумныя, паўправадніковыя. У якасці вентыляў выкарыстоўваюцца дыёды, тыратроны, тырыстары. Магутнасць эл. вентыляў ад долей вата да дзесяткаў кілават.

3) вентыль у вылічальнай тэхніцы — электроннае прыстасаванне на паўправадніковых прыладах (дыёдах, транзістарах) або ў выглядзе інтэгральнай схемы з некалькімі (часцей двума) уваходамі і адным выхадам. У гэтым вентылі сігнал на выхадзе ўтвараецца толькі тады, калі ёсць сігнал на ўсіх уваходах. Выкарыстоўваецца для кіравання перадачай сігналаў і ажыццяўлення лагічных аперацый.

4) Прыстасаванне ў камеры пнеўматычнай шыны, якое дапамагае напампоўваць паветра ў камеру і перашкаджае яго выхаду.

5) Механізм, які зменьвае (звычайна павялічвае) даўжыню канала духавых інструментаў (валторнаў, труб і інш.).

т. 4, с. 89

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯКІРАВА́ННЕ,

спосаб кіравання механізмамі, прыладамі і прыстасаваннямі, пры якім у якасці кіроўных сігналаў выкарыстоўваюцца розныя праяўленні жыццядзейнасці арганізма чалавека (часам паняцце біякіравання пашыраецца і на інш. жывыя сістэмы). Для біякіравання могуць выкарыстоўвацца біяпатэнцыялы, гукі, што суправаджаюць працэс дыхання і работу сэрца, ваганні т-ры цела і інш. Найб. пашыраны сістэмы з біяэлектрычным кіраваннем, у якіх біяпатэнцыялы, што генерыруюцца галаўным мозгам, сардэчнай і шкілетнымі мышцамі, нервамі, узмацняюцца і пераўтвараюцца ў іншыя сігналы для ўздзеяння на кіроўны аб’ект.

Сістэмы біякіравання выкарыстоўваюцца ў тэхніцы (напр., для кіравання маніпулятарам, лятальным апаратам, калі на пілота ўздзейнічаюць моцныя перагрузкі і рухі яго абцяжараны). Асабліва пашыраны ў медыцыне, напр., біяпатэнцыялы галаўнога мозга служаць для кантролю глыбіні наркозу ў час хірург. аперацый. Біякіраванні з выкарыстаннем біяпатэнцыялаў сэрца ўжываюцца ў дыягнастычных прыладах, якія забяспечваюць уключэнне сігналізацыі і рэгістравальнай апаратуры (напр., пры парушэннях сардэчнага рытму) і ў мед. прыладах для аўтам. падтрымання функцый арганізма (напр., у апаратах для штучнага кровазвароту). Значную групу прыстасаванняў з біякіраваннем складаюць актыўныя пратэзы, для кіравання якімі выкарыстоўваюцца біяпатэнцыялы, што ўзнікаюць у тканках здаровых, часткова ампутаваных ці паралізаваных канечнасцяў.

М.П.Савік.

т. 3, с. 169

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)