ГЕАДЭЗІ́ЧНАЯ АСТРАНО́МІЯ,

палявая астраномія, раздзел практычнай астраноміі, які для патрэб геадэзіі і картаграфіі распрацоўвае метады вызначэння геагр. каардынат пунктаў і азімутаў ліній на зямной паверхні з дапамогай астр. назіранняў. Многія яе спосабы вызначэнняў шыраты, часу і азімута засн. на вымярэнні зенітных адлегласцей свяціл; даўгата вызначаецца з рознасці паміж знойдзеным мясц. зорным часам і грынвіцкім часам для сярэдняга моманту назіранняў. Пункт на мясцовасці, геагр. каардынаты і азімут напрамку якога на другі пункт знойдзены з дапамогай астр. назіранняў, наз. астр. пунктам. Геадэзічная астраномія займаецца апісаннем і тэорыяй астр. прылад, неабходных пры вызначэнні астр. каардынат пунктаў, распрацоўкай спосабаў вызначэння часу, шыраты, даўгаты і азімута, метадаў астр. вымярэнняў у палявых умовах і апрацоўкі даных.

Літ.:

Кузнецов А.Н. Геодезическая астрономия. М., 1966.

т. 5, с. 116

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДАЛЬНАМЕ́Р,

прылада для вызначэння адлегласцей да аб’ектаў без непасрэдных вымярэнняў на мясцовасці. Паводле прынцыпу дзеяння адрозніваюць Д. геам. (пасіўнага) і фіз. (актыўнага) тыпаў. Выкарыстоўваюцца ў інж. геадэзіі, тапаграфіі, ваен. справе, навігацыі, астраноміі, фатаграфіі і інш.

Прынцып дзеяння Д. геам. тыпу засн. на рашэнні роўнабаковага трохвугольніка па вядомай старане (базе) і процілеглым (паралактычным) вугле. Такія прылады бываюць монакулярныя (з адным акулярам; напр., у фотаграфічных апаратах) і бінакулярныя (гл. Стэрэаскапічны дальнамер), з пастаяннай базай і пастаянным вуглом (гл Аптычны дальнамер). Прынцып дзеяння Д. фіз. тыпу засн. на вымярэнні часавых або фазавых суадносін паміж пасланым і прынятым (адбітым ад аб’екта) сігналамі. У залежнасці ад выбранага дыяпазону і віду ваганняў адрозніваюць акустычныя Д. (гл. Гідралакацыя, Рэхалот), радыёдальнамеры і святлодальнамеры, у т.л. лазерныя.

П.С.Габец.

т. 6, с. 22

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДЗЯЛІ́ЛЬНЫЯ МАШЫ́НЫ І ПРЫСТАСАВА́ННІ.

Дзялільная машына — станок для нанясення дзяленняў (штрыхоў) на лінейках, шкалах прылад, растрах і інш. Найб. пашыраны аўтам. разцовыя машыны для нанясення лінейных і вуглавых шкал на вымяральных інструментах і прыладах. Дзялільная галоўка — прыстасаванне металарэзных (пераважна фрэзерных) станкоў для павароту на пэўны вугал дэталі, якая апрацоўваецца. Бываюць мех. і аптычныя. З іх дапамогай фрэзеруюць упадзіны паміж зубамі зубчастых колаў і рэжучых інструментаў, апрацоўваюць шматграннікі і інш. Дзялільныя прыстасаванні служаць для дакладнага паварочвання або прасоўвання дэталей пры апрацоўцы і вымярэнні паверхняў, наразанні шліцаў, спіральных пазоў і інш. Да іх адносяцца механізмы павароту сталоў разметачна-расточных, зубастругальных і інш. станкоў, а таксама барабанаў, рэвальверных галовак. На універсальных дзялільных прыстасаваннях звычайна апрацоўваюць складаныя дэталі. Для дакладных вымярэнняў яны аснашчаюцца мікраскопам.

т. 6, с. 138

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БРО́ДСКІ Іосіф Аляксандравіч

(24.5.1940, г. С.-Пецярбург — 28.1.1996),

рускі паэт. Пісаць пачаў у 16 гадоў. Да 1960 быў вядомы як паэт сярод моладзі і ў неафіц. колах. У 1963 арыштаваны, у 1964 за «дармаедства» прыгавораны да 5 гадоў ссылкі з абавязковым прыцягненнем да працы. Датэрмінова вызвалены (1965) дзякуючы заступніцтву А.Ахматавай, С.Маршака, Дз.Шастаковіча і інш. У 1972 Бродскі пакінуў радзіму. Жыў у ЗША. Выкладаў рус. л-ру ва універсітэтах і каледжах. Пісаў на рус. і англ. мовах. Аўтар кніг «Перапынак у пустыні» (1967), «Канец цудоўнай эпохі» (1972), «Уранія» (1987) і інш., у якіх паказаў складаны творчы і духоўны свет паэта. Яго паэзія — у своеасаблівым творчым вымярэнні і ў той жа час яна цвёрда стаіць на рэальнай зямлі. Нобелеўская прэмія 1987.

Тв.:

Соч.: В 4 т. Т. 1—2. СПб., 1992—94;

Назидание. 1990;

Форма времени. Т. 1—2. Мн., 1992.

т. 3, с. 257

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАФІЗІ́ЧНАЯ РАЗВЕ́ДКА,

геафізічныя метады пошукаў і разведкі, фізічныя метады даследавання будовы зямной кары з мэтай пошукаў і разведкі карысных выкапняў; раздзел геафізікі. Засн. на выкарыстанні адрозненняў фіз. уласцівасцей карысных выкапняў і ўмяшчальных горных парод. Пры геафізічнай разведцы выкарыстоўваюць метады і іх мадыфікацыі: гравітацыйны (даследуе шчыльнасць горных парод), магнітны (намагнічанасць), электрычны (удзельнае эл. супраціўленне), сейсмічны (хвалевае супраціўленне і хуткасць пашырэння сейсмічных хваль), радыеактыўны (радыеактыўнасць). Вымярэнні вядуцца з паверхні Зямлі (сушы і мора), з паветра і пад зямлёй (гл. Каратаж). У граві-, магніта-, электра- і радыёразведцы вымяраюць параметры прыродных геафіз. палёў, у сейсмаразведцы і некат. відах электраразведкі выкарыстоўваюць штучнае ўзбуджэнне палёў (праз выбухі ці вібрацыю, увядзенне ў глебу эл. току). Важная пошукавая прыкмета — геафізічныя анамаліі. Геафізічная разведка бывае прамой (выяўленне радовішча) і ўскоснай (выяўленне геал. умоў, з якімі звязаны карысныя выкапні). Метады даследавання будовы зямной кары, пошукаў і разведкі нафтавых і газавых радовішчаў распрацоўвае структурная геафізіка; пошукаў, разведкі і даследавання радовішчаў руд — рудная геафізіка; даследаванняў геал. разрэзу і тэхн. стану свідравіны — прамысл. Геафізіка.

Г.І.Каратаеў.

т. 5, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕ́ЖЫНАЎ Павел

(сапр. Гугаў Нікала Дэлчаў; 9.11.1914, Сафія — 21.12.1983),

балгарскі пісьменнік. Вучыўся ў Сафійскім ун-це (1939—41). Друкаваўся з 1932. У першым зб. апавяданняў «Вуліца без бруку» (1938) адлюстраваў побыт і духоўнае аблічча горада. Майстэрства псіхал. аналізу выявілася ў зб. апавяданняў «Дні і вечары» (1942). Аўтар антыфаш. аповесцяў і апавяданняў (зб. «Другая рота», 1949), рамана пра сац. пераўтварэнні ў краіне «Сухая раўніна» (1952). Пачынальнік дэтэктыўна-прыгодніцкага жанру ў балг. л-ры (раман «Сляды застаюцца», 1954, бел. пер. 1960). У зб-ках апавяданняў «Хлопчык са скрыпкай» (1963), «Пах міндалю» (1966), аповесцях «Бар’ер» (1976), «Вымярэнні» (1979), раманах «Ноччу на белых конях» (1975), «Шалі» (1982) — маральна-філас. праблематыка, абвостраная цікавасць да чалавечай псіхікі. На бел. мову яго творы перакладалі У.Анісковіч, Н.Гілевіч і інш.

Тв.:

Бел. пер. — Багна // Скарб: Апавяданні балг. пісьменнікаў. Мн., 1967;

Вышэй за ўсё;

Бар’ер: Аповесці. Мн., 1983;

Вершы: Апавяданне // Далягляды. Мн., 1985;

Рус. пер. — Измерения: Повести. М., 1982;

Избранное. Т. 1—2. М., 1985;

Синие бабочки: Повести и рассказы. М., 1990.

Літ.:

Книга за Павел Вежинов. София, 1986.

Г.Я.Адамовіч.

т. 4, с. 59

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКТЫВАЦЫ́ЙНЫ АНА́ЛІЗ, радыеактывацыйны аналіз,

метад вызначэння якаснага і колькаснага саставу рэчыва, які грунтуецца на апрамяненні (актывацыі) ат. ядраў і наступным вымярэнні іх радыеактыўнага выпрамянення. Упершыню выкарыстаны венг. хімікамі Дз.Хевешы і Г.Леві (1936).

Актывацыйны аналіз бывае інструментальны (даследаванне другаснага выпрамянення з дапамогай спец. апаратуры без разбурэння пробы) і радыехімічны (хім. раздзяленне радыенуклідаў і вызначэнне актыўнасці кожнага з іх паасобку або ў невял. групе элементаў). Пры актывацыйным аналізе доследны матэрыял пэўны час апрамяняюць ядз. часціцамі, потым вымяраюць энергет. спектр, актыўнасць, перыяд паўраспаду T1/2 радыеізатопа, які ўтварыўся ў выніку апрамянення. Ведаючы T1/2, від радыеактыўных пераўтварэнняў, тып і энергію другаснага выпрамянення, якое суправаджае распад узніклага радыеізатопа, ідэнтыфікуюць зыходны ізатоп. Актыўнасць радыеактыўнага ізатопа пасля апрамянення прама прапарцыянальная колькасці ядраў зыходнага (звычайна стабільнага) ізатопа, што дазваляе правесці колькасны аналіз. Адрозніваюць актывацыйны аналіз нейтронны, на зараджаных часціцах і на жорсткіх гама-квантах. Найб. пашыраны нейтронны актывацыйны аналіз: ядры большасці элементаў лягчэй актывуюцца нейтронамі; розніца ў значэннях эфектыўных сячэнняў ядз. рэакцый на нейтронах забяспечвае высокую выбіральнасць метаду адносна элементаў; мае высокую адчувальнасць (10​-7—10​10% у залежнасці ад элемента). Актывацыйны аналіз выкарыстоўваецца для аналізу асабліва чыстых рэчываў, кантролю тэхнал. працэсаў, разведкі карысных выкапняў, у крыміналістыцы, археалогіі і інш.

Э.І.Гірэй.

т. 1, с. 211

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАДЭЗІ́ЧНЫЯ ПРЫЛА́ДЫ І ІНСТРУМЕ́НТЫ,

прыстасаванні для вымярэння даўжынь ліній, вуглоў, перавышэнняў, азімутаў пры нівеліраванні, тапагр. здымцы, маркшэйдэрскіх работах, вышуканнях, будаўніцтве, мантажы і эксплуатацыі розных інж. збудаванняў. Паводле прынцыпу работы і будовы адрозніваюць мех., оптыка-мех., электрааптычныя і радыёэлектронныя геад. прылады. Стальныя або інварныя мерныя стужкі выкарыстоўваюць для вымярэння даўжынь ліній, базісныя прылады з падвесным інварным дротам — для вызначэння базісаў і трыянгуляцыі, дальнамерамі (святлодальнамер, радыёвышынямер, радыёдальнамер) вызначаюць даўжыню ліній без непасрэдных вымярэнняў з дакладнасцю да 0,1 мм на 100 м. Вуглы вымяраюць тэадалітамі (высокадасканальныя аптычныя, фотатэадаліты, гідратэадаліты) і бусоллю. Дакладнасць вымярэння вуглоў ад 15′—10′ у бусолі да 0,5″ у аптычнага тэадаліта. Нівеліры выкарыстоўваюць пераважна для вымярэння перавышэнняў, стварэння нівелірнай сеткі, вышыннага абгрунтавання тапагр. здымак. Паводле дакладнасці яны падзяляюцца на высокадакладныя, дакладныя і тэхнічныя. Гідрастатычнымі нівелірамі карыстаюцца зрэдку, прынцып дзеяння іх заснаваны на вымярэнні ўзроўняў вадкасці ў сасудах, злучаных гнуткім шлангам. З камбінаваных геадэзічных прылад найчасцей выкарыстоўваюць тахеометр (для вымярэння гарыз. і верт. вуглоў, даўжынь ліній і перавышэнняў) і кіпрэгель (для вымярэння верт. вуглоў, адлегласцей, перавышэнняў і графічнай пабудовы напрамкаў пры выкананні спец. мензульнай здымкі). Экліметр выкарыстоўваюць у геад. здымцы для вымярэння вуглоў нахілу ліній з дакладнасцю да 0,1°; экер — для адкладання на мясцовасці фіксаванага вугла; мензула (дошка-планшэт і падстаўкі з установачнымі прыстасаваннямі) — асн. ч. камплекта для тапагр. мензульнай здымкі; ватэрпас вадкасны або электрамеханічны — для вызначэння становішча геад. прылад і іх асобных вузлоў адносна верт. ліній; рэйка геадэзічная (брусок даўж. 1,5—4 м з нанесенай шкалой) — для вымярэння адлегласцей або перавышэнняў пры тапагр. здымцы. Пры складанні планаў, картаў і пры карыстанні імі ўжываюцца каардынатографы, маштабныя лінейкі і вымяральнікі, транспарціры, планіметры і курвіметры.

Р.А.Жмойдзяк.

т. 5, с. 116

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКІЯНАЛО́ГІЯ

(ад акіян + ...логія),

акіянаграфія, сукупнасць навуковых дысцыплін аб фізічных, хімічных, геалагічных і біялагічных працэсах у Сусветным акіяне. Гал. задачы акіяналогіі: высвятленне агульных заканамернасцяў прыроды акіяна, вывучэнне трансфармацыі і абмену рэчываў і энергіі ў акіянскіх водах і ахова іх ад забруджвання, выкарыстанне харчовых, хім. і энергет. рэсурсаў акіяна, распрацоўка доўгатэрміновых прагнозаў надвор’я на Зямлі, папярэджанне катастрафічных з’яў, звязаных з акіянамі, забеспячэнне эфектыўнасці і бяспекі надводнага і падводнага мараплавання.

Першымі даследчыкамі акіянаў былі стараж. мараплаўцы. Стараж.-грэч. вучоныя Герадот, Арыстоцель, Гіпарх і інш. выказвалі меркаванні аб адзінстве Атлантычнага і Індыйскага акіянаў, кругавароце вады ў прыродзе, прылівах і інш. з’явах. Перыяд інтэнсіўнага вывучэння звязаны з эпохай Вял. геагр. адкрыццяў (сярэдзіна 15—18 ст.; Х.Калумб, Ф.Магелан, Дж.Кук і інш.). Важныя вынікі атрыманы рус. Антарктычнай экспедыцыяй Ф.Белінсгаўзена і М.Лазарава на суднах «Усход» і «Мірны» (1820) і першай комплекснай акіянаграфічнай экспедыцыяй на карвеце «Чэленджэр» (1872—76; Дж.Мерэй склаў першую карту акіянскіх глеяў). Даследаванні розных ч. Сусветнага ак. праводзілі С.Макараў на «Віцязі» (1886—89) і ледаколе «Ярмак» (1899, 1901), Ф.Нансен на «Фраме» (1891—96), ням. экспедыцыя на «Метэоры» (1925—27), Антарктычная англ. экспедыцыя на «Дысковеры 11» (1929—39) і інш. Пасля 2-й сусв. вайны акіяналогія становіцца адной з важных навук у сувязі з пачаткам выкарыстання рэсурсаў Сусветнага акіяна. Даследаванні акваторыі акіяна, складанне схемы рэльефу дна праводзяць н.-д. экспедыцыі розных краін (амер. з 1956 «Віма», з 1957 «Атлантык»; рус. з 1957 «Віцязь», з 1967 «Акадэмік Кніповіч», з 1974 «Дзмітрый Мендзялееў» і інш.). Грунтуецца акіяналогія на фактычных даных вымярэнняў, атрыманых з суднаў надвор’я, дрэйфуючых аўтам. гідраметэаралагічных станцый і акіянаграфічных платформаў, штучных спадарожнікаў Зямлі і падводных лабараторый. У сучаснай акіяналогіі пашыраны матэм мадэліраванне фіз., хім. і біял. працэсаў, даследаванне зменлівасці іх на падставе тэорыі імавернасці і матэм. статыстыкі.

Фізіка акіяна даследуе фіз. працэсы ў акіянскіх і марскіх водах, заканамернасці ўзаемадзеяння акіяна і атмасферы; хімія акіяна вывучае хім. ўласцівасці, састаў, фіз. і хім. працэсы водаў; геалогія акіяна — паходжанне ложа акіяна, яго эвалюцыю і будову, рэльеф дна, заканамернасці ўтварэння карысных выкапняў; біялогія акіяна — жывёльны і раслінны свет акіянаў і мораў, фарміраванне біял. прадукцыйнасці акіянскіх і марскіх водаў. Вылучаюць акіяналогію рэгіянальную, якая займаецца фізіка-геагр. і эканоміка-геагр. даследаваннем акіянаў і мораў; прамысловую, звязаную з акіяналагічным забеспячэннем марскіх промыслаў; спадарожнікавую (касмічную), якая атрымлівае вымярэнні разнастайных параметраў акіяна са штучных спадарожнікаў. Акіянскія даследаванні каардынуюцца Навук. к-там па акіянскіх даследаваннях, Міждзярж. акіянаграфічнай камісіяй пры ЮНЕСКА, нац. гідраметэацэнтрамі і н.-д. Ін-тамі.

А.М.Вітчанка.

т. 1, с. 194

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСМАТЫ́ЧНЫ ЦІСК, дыфузны ціск,

лішкавы гідрастатычны ціск раствору, які перашкаджае дыфузіі растваральніку праз паўпранікальную перагародку; тэрмадынамічны параметр. Характарызуе імкненне раствору да зніжэння канцэнтрацыі пры сутыкненні з чыстым растваральнікам пры сустрэчнай дыфузіі малекул растворанага рэчыва і растваральніку. Абумоўлены змяншэннем хімічнага патэнцыялу растваральніку ў прысутнасці растворанага рэчыва. Роўны лішкаваму вонкаваму ціску, які неабходна прыкласці з боку раствору, каб спыніць осмас. Вымяраецца ў паскалях.

Вымярэнні асматычнага ціску пачаў у 1877 ням. батанік В.Пфефер у растворы трысняговага цукру. Па яго даных галандскі хімік Я.Х.Вант-Гоф устанавіў у 1887, што залежнасць асматычнага ціску ад канцэнтрацыі цукру па форме супадае з Бойля-Марыёта законам для ідэальных газаў. Асматычны ціск вымяраюць з дапамогай асмометраў. Статычны метад вымярэння асматычнага ціску заснаваны на вызначэнні лішкавага гідрастатычнага ціску па вышыні слупка вадкасці H пасля ўстанаўлення стану раўнавагі пры роўнасці вонкавых ціскаў PА і PБ; дынамічны метад зводзіцца да вымярэння скорасці V усмоктвання і выціскання растваральніку з асматычнай ячэйкі пры розных значэннях лішкавага ціску P = PА  – PБ з наступнай інтэрпаляцыяй атрыманых даных да V=0 пры лішкавым ціску Δp, роўным асматычнаму ціску. Па велічыні асматычнага ціску распазнаюць: ізатанічныя, або ізаасматычныя, растворы, якія маюць аднолькавы асматычны ціск (незалежна ад саставу), гіпертанічныя з больш высокім Асматычным ціскам і гіпатанічныя растворы з больш нізкім асматычным ціскам.

Асматычны ціск адыгрывае важную ролю ў жыццядзейнасці жывых клетак і арганізмаў. У клетках і біял. вадкасцях ён залежыць ад канцэнтрацыі раствораных у іх рэчываў. Па велічыні асматычнага ціску вадкасцяў унутр. асяроддзя арганізма (кроў, гемалімфа і інш.) водныя арганізмы падзяляюцца на гіпер-, гіпа- і ізаасматычныя. Сярэдняя велічыня і дыяпазон асматычнага ціску ў розных арганізмаў розныя і залежаць ад віду і ўзросту арганізма, тыпу клетак і асматычнага ціску навакольнага асяроддзя (напр., асматычны ціск клетачнага соку наземных органаў балотных раслін 0,2—1,6 МПа, у стэпавых 0,8—0,4, у дажджавых чарвякоў 0,36—0,48, у прэснаводных рыб 0,6—0,66, у акіянічных касцістых рыб 0,78—0,85, акулавых 2,2—2,3, млекакормячых 0,66—0,8 МПа). У гіперасматычных арганізмаў (прэснаводныя жывёлы, некаторыя марскія храстковыя рыбы — акулы, скаты; усе расліны) унутр. Асматычны ціск перавышае асматычны ціск навакольнага асяроддзя, таму іоны могуць актыўна паглынацца арганізмам і ўтрымлівацца ў ім, а вада паступае праз біял. мембраны пасіўна, у адпаведнасці з асматычным градыентам. У гіпаасматычных жывёл (касцістыя рыбы, некаторыя марскія паўзуны, птушкі) асматычны ціск крыві меншы за асматычны ціск навакольнага асяроддзя. Адноснае пастаянства Асматычнага ціску забяспечваецца водна-салявым абменам праз осмарэгулявальныя органы (гл. ў арт. Осмарэгуляцыя).

Літ.:

Курс физической химии. Т.1—2. 2 изд. М., 1970—73;

Пасынский А.Г. Коллоидная химия. 3 изд. М., 1968;

Гриффин Д., Новик Эл. Живой организм: Пер. с англ. М., 1973.

т. 2, с. 38

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)