ГУ́МА (ад лац. gummi камедзь),

рызіна, вулканізат, эластычны матэрыял, які атрымліваюць вулканізацыяй каўчуку. Найважнейшая ўласцівасць гумы — высокаэластычнасць: здольнасць без значных астаткавых дэфармацый вытрымліваць шматразовыя расцяжэнні на 500—1000% у шырокім інтэрвале тэмператур.

Атрымліваюць гуму пераважна вулканізацыяй кампазітаў (гумавых сумесей), аснову якіх (звычайна 20—60% па масе) складаюць каўчукі (гл. Каўчук натуральны, Каўчукі сінтэтычныя). У састаў сумесей уваходзяць таксама вулканізуючыя агенты, напаўняльнікі, пластыфікатары, стабілізатары і інш. інгрэдыенты мэтавага прызначэння, агульная колькасць якіх можа дасягаць 15—20. Выбар каўчуку і склад гумавай сумесі абумоўлены прызначэннем, умовамі эксплуатацыі і тэхн. патрабаваннямі да вырабаў, тэхналогіяй вытв-сці. Паводле прызначэння і ўмоў эксплуатацыі адрозніваюць наступныя асн. групы: агульнага прызначэння (выкарыстоўваюць пры т-рах ад -50 да 150 °C); цеплаўстойлівую (для працяглай эксплуатацыі пры 150 — 200 °C); марозаўстойлівую (выкарыстоўваюць пры т-рах ніжэй за -50 °C); маслабензаўстойлівую; устойлівую да ўздзеяння агрэсіўных хім. рэчываў (кіслот, шчолачаў, азону); дыэлектрычную; электраправодную; магнітную; вогнеўстойлівую; радыяцыйнаўстойлівую; вакуумную; фрыкцыйную, харч. і мед. прызначэння і інш. Атрымліваюць таксама сітаватую гуму, гуму каляровую і празрыстую. Выкарыстоўваюць у тэхніцы, сельскай гаспадарцы, буд-ве, медыцыне, побыце. Асартымент гумавых вырабаў налічвае больш за 70 тыс. найменняў. Больш за палавіну аб’ёму вырабленай гумы выкарыстоўваюць у вытв-сці шын.

Літ.:

Федюкин Д.Л., Махлис Ф.А. Технические и технологические свойства резин. М., 1985.

Я.І.Шчарбіна.

т. 5, с. 529

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯХІ́МІЯ (ад бія... + хімія),

біялагічная хімія, навука, якая вывучае хім. састаў арганізмаў і хім. працэсы, звязаныя з іх жыццядзейнасцю. Адрозніваюць статычную біяхімію, якая займаецца пераважна аналізам хім. саставу арганізмаў і цесна ўзаемазвязана з біяарганічнай хіміяй і малекулярнай біялогіяй, дынамічную біяхімію, што даследуе працэсы ператварэння рэчываў у арганізме, і функцыянальную біяхімію, якая высвятляе сувязь паміж хім. ператварэннямі малекул і функцыяй клеткі ці органа (механізмы сакрэцыі, мышачнае скарачэнне, перадача спадчынных уласцівасцяў і інш.), а таксама механізмы рэгуляцыі працэсаў жыццядзейнасці. Паводле аб’ектаў даследавання адрозніваюць біяхімію мікраарганізмаў, раслін, жывёл і чалавека. Шэраг раздзелаў біяхіміі вылучаюць у асобныя навук. дысцыпліны: біяхімія вітамінаў, гармонаў, клінічная біяхімія і інш. Асобна ідуць параўнальная і эвалюцыйная біяхімія, якія займаюцца вывучэннем узаемасувязі паміж рознымі жывымі арганізмамі на малекулярным узроўні.

Як асобная навука біяхімія сфарміравалася ў 19 ст. Гісторыя развіцця біяхіміі бярэ пачатак ад аграхімікаў (ням. ўрач і прыродазнавец Парацэльс, 16 ст., і інш.), якія разглядалі жыццядзейнасць чалавека з пазіцый хіміі, увялі ў практыку лячэння шэраг хім. прэпаратаў. У пач. 19 ст. праведзены даследаванні па вывучэнні хім. саставу раслінных і жывёльных клетак, у 1828 сінтэзавана мачавіна (ням. хімік Ф.Вёлер), у 1842 у Германіі выдадзены першы падручнік па біяхіміі (І.Зіман). Ва ун-тах Еўропы, Расіі (Казань, А.Я.Данілеўскі, 1863) адкрыты кафедры біяхіміі. У 2-й пал. 19 ст. назапашаны некаторыя звесткі пра састаў і хім. пераўтварэнні бялкоў, тлушчу і вугляводаў, працэс браджэння (ням. вучоныя Ю.Лібіх, Э.Бухнер, франц. Л.Пастэр), фотасінтэз (К.А.Ціміразеў). Вял. ўклад у развіццё біяхіміі ў Расіі зрабілі М.В.Ненцкі, адзін з заснавальнікаў тэорыі біясінтэзу мачавіны ў арганізме млекакормячых, Я.С.Лондан (распрацаваў метады ангіястаміі і арганастаміі для прыжыццёвага даследавання абменных працэсаў на цэлым арганізме), У.І.Паладзін і Дз.М.Пранішнікаў (вывучалі абмен азоту ў раслінах), А.М.Бах (заснавальнік школы рус. біяхімікаў; даследаваў хімізм фотасінтэзу і акісляльныя працэсы ў клетцы) і інш.

На Беларусі біяхім. даследаванні праводзяцца з канца 19 ст. Цяпер вядуцца ў біял. ін-тах АН Беларусі, НДІ мед. і с.-г. профілю, на адпаведных кафедрах і ў навук. цэнтрах ВНУ. Найб. вядомы працы па біяхіміі фотасінтэзу (Ц.М.Годнеў, А.А.Шлык, А.С.Вечар), глебавых ферментаў (В.Ф.Купрэвіч), біяхіміі мікраэлементаў (В.А.Лявонаў, Ф.Я.Беранштэйн), вітамінаў (Ю.М.Астроўскі), біяхіміі біял. мембранаў (С.В.Конеў), па патахіміі (М.Ф.Меражынскі), біяхіміі апрамененага арганізма (Л.С.Чаркасава). Даследуюцца біяхім. працэсы ў тканках, асобныя праблемы тэхн. біяхіміі, малекулярнай біяхіміі, біяэнергетыкі; вывучаюцца лакалізацыя і ператварэнне рэчываў у клетках і тканках, сувязь паміж будовай біяпалімераў і інш. біялагічна актыўных прыродных злучэнняў з іх функцыямі. Патрабуюць вырашэння праблемы: вывучэнне малекулярных асноў злаякаснага росту, імунітэту, малекулярных механізмаў памяці, асноў рацыянальнага харчавання чалавека і жывёл, малекулярных асноў спадчынных і саматычных захворванняў чалавека, арганізацыі і механізмаў дзейнасці генома, прынцыпаў біял. пазнавання, структуры і функцыі біял. мембранаў, праблемы ўзаемаадносін чалавека і навакольнага асяроддзя.

Літ.:

Основы биохимии: Пер. с англ. Т. 1—3. М., 1981;

Кретович В.Л. Очерки по истории биохимии в СССР. М., 1984;

Ленинджер А. Основы биохимии: Пер. с англ. Т. 1—3. М., 1985;

Биохимия человека. Т. 1—2. М., 1993.

В.К.Кухта.

т. 3, с. 181

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСТРАФІ́ЗІКА,

раздзел астраноміі, які вывучае фізічную будову, хімічны састаў і развіццё нябесных целаў. Узнікла ў сярэдзіне 19 ст. ў выніку выкарыстання ў астраноміі спектральнага аналізу, фатаграфіі і фотаметрыі, што дало магчымасць вызначаць т-ру атмасфер Сонца і зорак, іх магнітныя палі, скорасць руху ўздоўж праменя зроку, характар вярчэння зорак і інш. Асн. раздзелы астрафізікі: фізіка Сонца, фізіка зорных атмасфер і газавых туманнасцяў, тэорыя ўнутранай будовы і эвалюцыі зорак, фізіка планет і інш. Тэарэтычная астрафізіка вывучае асобныя нябесныя аб’екты (планеты, зоркі, пульсары, квазары, галактыкі, скопішчы галактык і інш.) і агульныя фіз. прынцыпы астрафіз. працэсаў з мэтай устанаўлення агульных законаў развіцця матэрыі ў Сусвеце. Практычная астрафізіка распрацоўвае інструменты, прылады і метады даследаванняў. Крыніцы атрымання інфармацыі пра нябесныя целы: эл.-магн. выпрамяненне (гама-, рэнтгенаўскае, ультрафіялетавае, бачнае, інфрачырвонае і радыёвыпрамяненне); касм. прамяні, якія дасягаюць атмасферы Зямлі і ўзаемадзейнічаюць з ёю; нейтрына і антынейтрына; гравітацыйныя хвалі, што ўзнікаюць пры выбухах масіўных зорак. Значны ўклад у развіццё Астрафізікі зрабілі А.А.Белапольскі, М.М.Гусеў, Ф.А.Брадзіхін, В.Я.Струвэ, Г.А.Ціхаў (Расія), Г.Фогель, К.Шварцшыльд (Германія), У.Кэмпбел, Э.Пікерынг, Э.Хабл (ЗША), А.Эдынгтан (Англія), В.А.Амбарцумян (СССР) і інш. Найб. значныя дасягненні сучаснай Астрафізікі — адкрыццё нябесных аб’ектаў з незвычайнымі фіз. ўласцівасцямі (нейтронныя зоркі, чорныя дзіркі, квазары).

Літ.:

Мартынов Д.Я. Курс обшей астрофизики. 4 изд. М., 1988;

Шкловский И.С. Звезды: их рождение, жизнь и смерть. 3 изд. М., 1984.

Ю.М.Гнедзін.

т. 2, с. 53

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАГНЕТАХІ́МІЯ,

раздзел фізічнай хіміі, які вывучае залежнасць паміж магн. ўласцівасцямі рэчываў і іх будовай.

Асн. ўласцівасць, якая вымяраецца ў М. — магнітная ўспрыімлівасць. Звычайна яе вызначаюць па змене вагі ўзору рэчыва ў магн. полі, пры гэтым карыстаюцца метадамі, прапанаванымі англ. вучоным М.Фарадэем і швейц. хімікам Ф.Гюі. Для дыямагнітных рэчываў, пераважна арган. злучэнняў, элементы будовы малекул выводзяцца, зыходзячы з адытыўнай схемы франц. фізікахіміка П.Паскаля (1910), згодна з якой малекулярная магн. ўспрыімлівасць роўная суме ўспрыімлівасцей асобных атамаў, што ўваходзяць у састаў малекулы, з папраўкай на характар хім. сувязі паміж імі. Пры даследаванні парамагн. рэчываў (напр., комплексаў пераходных металаў, атамных кластараў) супастаўляюць эксперым. і тэарэт. значэнні магнітных момантаў ці аналізуюць іх залежнасць ад т-ры, што дазваляе меркаваць аб ступені акіслення металу, прыродзе ўзаемадзеянняў унутры комплексу і комплексу з часціцамі, якія яго акружаюць, аб прасторавай структуры і сіметрыі крышт. поля, наяўнасці фера- і антыферамагн. узаемадзеянняў у шмат’ядз. утварэннях. У М. класічныя метады даследаванняў спалучаюцца з магнітарэзананснымі метадамі (гл. Электронны парамагнітны рэзананс, Ядзерны магнітны рэзананс). Новы кірунак у М. — вывучэнне непасрэднага ўплыву магн. поля на хім. раўнавагу, кінетыку і механізм хім, рэакцый. Метады М. выкарыстоўваюцца ў аналіт. практыцы, напр., для выяўлення прымесей ферамагн. рэчываў у колькасцях, недаступных для вызначэння інш. метадамі.

Літ.:

Калинников В.Т. Ракитин Ю.В. Введение в магнетохимию. М., 1980;

Карлин Р.Л. Магнетохимия: Пер. с англ. М., 1989.

В.Н.Макатун.

т. 9, с. 476

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

КАТА́ЛІЗ (ад грэч. katalysis разбурэнне),

змяненне скорасці хім. рэакцыі ці яе ўзбуджэнне пад уздзеяннем рэчываў (каталізатараў), якія прымаюць удзел у рэакцыі, але не ўваходзяць у састаў яе прадуктаў. У залежнасці ад таго, паскараецца ці запавольваецца рэакцыя, адрозніваюць К. дадатны і адмоўны. Звычайна тэрмін «К.» адносяць да працэсу паскарэння рэакцыі. Рэчывы, што запавольваюць хім. рэакцыю, наз. інгібітарамі хімічнымі. Паскарэнне рэакцыі пад уздзеяннем прадукту рэакцыі ці аднаго з прамежкавых рэчываў наз. аўтакаталізам. Усе каталітычныя рэакцыі — самаадвольныя працэсы (суправаджаюцца памяншэннем свабоднай энергіі сістэмы).

Адрозніваюць гамагенны К. (рэагуючыя рэчывы і каталізатар знаходзяцца ў адной фазе) і гетэрагенны (кантактавы) К. (рэагуючыя рэчывы і каталізатар знаходзяцца ў розных фазах і маюць мяжу падзелу). Пры гамагенным К. каталізатар рэгенерыруецца ў канцы рэакцыі, а скорасць гамагенна-каталітычнай рэакцыі звычайна прапарцыянальная канцэнтрацыі каталізатара. Гетэрагенна-каталітычныя рэакцыі адбываюцца ў некалькі стадый: дыфузія кампанентаў да паверхні каталізатара, адсорбцыя і хім. пераўтварэнні на паверхні, дэсорбцыя і адваротная дыфузія прадуктаў рэакцыі, кожная з якіх можа лімітаваць скорасць каталітычнага працэсу. Паводле механізму каталітычныя працэсы падзяляюцца на электронныя (радыкальныя), абумоўленыя пераносам электронаў (акісляльна-аднаўляльныя рэакцыі; напр., гідрагенізацыя) і іонныя (кіслотна-асноўныя; напр., крэкінг). Выкарыстоўваюць у хім. прам-сці (адносная доля каталітычных працэсаў складае 80—90%). Адыгрывае выключную ролю ў жывых арганізмах (гл. Біякаталіз).

Літ.:

Гейтс Б., Кетцир Дж., Шуйт Г. Химия каталитических процессов: Пер. с англ. М., 1981;

Боресков Г.К. Катализ: Вопр. теории и практики. Новосибирск, 1987.

У.С.Камароў.

т. 8, с. 169

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЕЙТРЫ́ННАЯ АСТРАНО́МІЯ,

раздзел астраноміі, звязаны з пошукам, рэгістрацыяй і даследаваннем патокаў нейтрына ад пазаземных крыніц. Узнікла ў 1960-я г. разам са з’яўленнем прылад і метадаў дэтэктыравання нейтрына. Метады Н.а., у адрозненне ад інш. метадаў даследавання касм. аб’ектаў, даюць магчымасць вывучаць шчыльныя касм. аб’екты і даўнія касмалагічныя эпохі.

У Сусвеце нейтрына ўтвараюцца ў выніку ядз. працэсаў у нетрах зорак і пры ўзаемадзеянні касм. выпрамянення з асяроддзем, напр. з рэчывам атмасферы Зямлі (атм. нейтрына), міжгалактычным і міжзорным газамі, морам рэліктавых фатонаў (гл. Рэліктавае выпрамяненне) і інш. Энергетычны спектр касм. нейтрына ад ~10​−4эВ (касмалагічныя, ці рэліктавыя нейтрына) да 10​20—10​28эВ. Энергія нейтрына ад Сонца і нестацыянарных зорак да 10​8эВ. Нейтрына слаба ўзаемадзейнічаюць з рэчывам, таму зоркі для іх практычна празрыстыя і яны бесперашкодна пакідаюць іх. Рэгістрацыя гэтых нейтрына дае магчымасць вызначаць т-ру, шчыльнасць і хім. састаў цэнтр. часткі зорак, недаступнай вывучэнню інш. метадамі. Слабае ўзаемадзеянне касм. нейтрына з рэчывам абумоўлівае складанасць іх дэтэктыравання (патрэбна вял. колькасць рэгістравальнага рэчыва і дэтэктары неабходна будаваць глыбока пад зямлёй). Створана 5 найб. магутных дэтэктараў сонечных нейтрына (ЗША, Расія — ЗША Італія — Расія, Японія, Канада) і 2 вял. дэтэктары атм. нейтрына (у воз. Байкал, Расія і антарктычным лёдзе, ЗША). З 1980 існуе сусветная служба назірання за ўспышкамі звышновых зорак у нейтрынным святле. Гл. таксама Нейтрынная астрафізіка.

І.С.Сацункевіч, А.А.Шымбалёў.

т. 11, с. 277

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАЛАГІ́ЧНЫЯ КА́РТЫ,

карты, якія адлюстроўваюць геал. будову мясцовасці. Складаюцца на тапаграфічнай аснове паводле матэрыялаў геалагічнай здымкі. Служаць падставай для ўсіх відаў геал. даследаванняў рэгіёнаў, прагнозу і пошукаў карысных выкапняў, інж.-геал. і інш. работ.

Паводле зместу і прызначэння падзяляюцца на ўласна геал. (агульнагеал.) карты (дачацвярцічных і чацвярцічных адкладаў, крышт. фундамента, глыбіннай геал. будовы, палеагеагр., шэльфавай зоны мораў, акіянскага дна), карты, якія раскрываюць асобныя геал. характарыстыкі тэрыторыі (тэктанічныя, палеатэктанічныя, навейшай тэктонікі, структурныя, літолага-фацыяльныя, геафіз. і геахім. анамалій і інш.), і карты, што адлюстроўваюць звесткі аб карысных выкапнях (карысных выкапняў, металагенічныя, рудных фармацый, рудных палёў, нафтагазаноснасці і інш.). На геалагічных картах пэўнымі колерамі і індэксамі з літар і лічбаў і інш. знакамі, якія складаюць легенду карты, пазначаюцца межы пашырэння (контуры) асадкавых горных парод, якія падзяляюцца паводле ўзросту ў адпаведнасці з агульнай (міжнар.) стратыграфічнай шкалой, вылучаюцца інтрузіўныя, эфузіўныя і метамарфічныя пароды, а таксама петраграфічны састаў горных парод, разрыўныя парушэнні і інш. дэталі. Да геалагічных картаў дадаюцца геалагічныя разрэзы і тлумачальная запіска з апісаннем геал. будовы тэрыторыі і гісторыі яе фарміравання. Паводле маштабу геалагічныя карты падзяляюць на аглядныя (драбней за 1:1 000 000) і рэгіянальныя сярэднемаштабныя (1:500 000, 1:200 000, 1:100 000), буйнамаштабныя (1:50 000, 1:25 000) і дэталёвыя (1:10 000 і буйнейшы).

Для тэр. Беларусі складзены геалагічныя карты маштабаў 1 : 1 000 000, 1 : 500 000, 1 : 200 000 і 1 : 100 000.

т. 5, с. 118

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЕЙРАХІ́МІЯ (ад нейра... + хімія),

біяхімія нервовай сістэмы, раздзел біяхіміі, які вывучае хім. састаў нерв. тканкі, абмен рэчываў у ёй, хім. і малекулярна-клетачныя механізмы дзейнасці нерв. сістэмы. Цесна звязана з біяфізікай, малекулярнай біялогіяй, нейрафізіялогіяй, нейраэндакрыналогіяй, параўнальнай, узроставай і эвалюц. фізіялогіяй, цыта- і гістахіміяй. Мае вял. значэнне для нейрафармакалогіі, неўрапаталогіі, псіхіятрыі.

Узнікла ў 2-й пал. 19 ст. з пачаткам сістэм. даследавання хім. складу галаўнога мозга (А.Я.Данілеўскі, ням. вучоны Дж.Л.У.Тудыхум і інш.). У сярэдзіне 20 ст. сфарміравалася як самаст. кірунак. Уклад у развіццё Н. зрабілі Г.Х.Дэйл, Б.Кац, О.Лёві. Х.К.Хартлайн, сав. вучоныя А.У.Паладзін, Я.М.Крэпс, Г.Я.Уладзіміраў і інш. У складзе нерв. тканкі вылучаны шэраг складаных ліпідаў (гангліязіды, сфінгаміэліны, фасфатыды, цэрэбразіды і інш.), біялагічна актыўных рэчываў (медыятараў і нейрагармонаў), амінаў (адрэналін, ацэтылхалін, гістамін, норадрэналін, сератанін і інш.), пептыдаў (напр., эндарфіны, энкефаліны), амінакіслот і інш. Удакладняецца іх функцыян. роля, высвятляюцца метабалізм і механізмы дзеяння гэтых рэчываў, а таксама гармонаў, таксінаў, фармакалагічных прэпаратаў і інш. Вывучаюцца біяхім. асновы перадачы нерв. імпульсаў, нейратрафічных уплываў, узбуджэння, тармажэння, сну, памяці, навучання, работы рэцэптараў, індывід. развіцця мозга і інш.

На Беларусі Н. развіваецца з 1922 сумесна з нейрафізіялогіяй у ін-тах фізіялогіі і біяхіміі Нац. АН Беларусі, Бел. НДІ неўралогіі, нейрахірургіі і фізіятэрапіі, БДУ, Мінскім і Гродзенскім мед. ін-тах, Віцебскім мед. ун-це і Гомельскім ун-це.

Літ.:

Палладин А.В., Белик Я.В., Полякова Н.М. Белки головного мозга и их обмен. Киев, 1972;

Хухо Ф. Нейрохимия: Основы и принципы: Пер. с англ. М., 1990.

С.С.Ермакова.

т. 11, с. 274

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЕПТУ́Н,

восьмая па парадку ад Сонца планета Сонечнай сістэмы, знак . Адкрыты ў 1846 ням. астраномам І.Гале паводле тэарэт. прадказанняў У.Ж.Левер’е і Дж.К.Адамса.

Сярэдняя адлегласць ад Сонца 4504,4 млн. км. Перыяд абарачэння вакол Сонца 164,788 года, вакол восі 16 гадз 6 мін. Экватарыяльны дыяметр 49 528 км. Нахіл экватара да плоскасці арбіты 29°. Маса 1,03·10​26 кг (17,22 масы Зямлі). сярэдняя шчыльн. 1640 кг/м³. Унутраныя ​2/3 часткі Н. складаюцца з сумесі літага каменю, вады. вадкага аміяку і метану; вонкавая трэць — з сумесі нагрэтых газаў (вадароду, гелію. метану) і пары вады. Састаў атмасферы: метан, вадарод, гелій Нетры Н. вылучаюць вял. колькасць энергіі. Атрымлівае ад Сонца ў 2.5 раза менш энергіі, чым Уран; т-ра атмасферы Н. (каля 214 °C) амаль такая ж, як ва Урана. Адна з гіпотэз існавання ўнутр. крыніц энергіі — эвалюцыйнае сцісканне планеты. Простым вокам Н. не бачны (яго бляск каля 7,8 візуальнай зорнай велічыні). Паглынанне чырвоных прамянёў атмасферным метанам абумоўлівае сіні колер планеты. Мае 8 спадарожнікаў (гл. Спадарожнікі планет). Выяўлена 5 кольцаў на адлегласці ад 41,9 тыс. да 62.9 тыс. км ад цэнтра планеты, якія складаюцца з пылу. Большасць звестак пра Н. атрымана пры дапамозе аўтаматычнай міжпланетнай станцыі «Вояджэр».

Літ.:

Тейфель В.Г. Уран и Нептун — далекие планеты-гиганты. М., 1982;

Гребеников Е.А., Рябов Ю.А. Поиски и открытия планет. 2 изд. М., 1984;

Уипл Ф.Л. Семья Солнца: Пер. с англ. М., 1984.

А.А.Шымбалёў.

Агульны выгляд планеты Нептун (фотаздымак атрыманы аўтаматычнай міжпланетнай станцыяй «Вояджэр-2»).

т. 11, с. 289

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСТРАНАМІ́ЧНЫЯ ІНСТРУМЕ́НТЫ І ПРЫЛА́ДЫ,

оптыка-механічная і электронная апаратура для астранамічных назіранняў і апрацоўкі іх даных. Дапамагаюць вызначаць становішча касм. целаў на нябеснай сферы, іх памеры, скорасць, напрамак руху ў прасторы, хім. састаў і фіз. стан. Складаюць асн. тэхнічную базу астранамічных абсерваторый, выкарыстоўваюцца ў навуч. і пазнавальных мэтах. Падзяляюцца на назіральныя прылады (тэлескопы), святлопрыёмную і аналізоўную апаратуру, прылады для рэгістрацыі часу, спектраў і гэтак далей Каб пазбегнуць шкодных і скажальных уздзеянняў атмасферы Зямлі, астр. інструменты падымаюць на розныя вышыні з дапамогай аэрастатаў, самалётаў, геафіз. ракет, штучных спадарожнікаў Зямлі і аўтам. міжпланетных станцый.

Найбольш стараж. астр. інструменты — вугламерныя, складаюцца з адліковага круга (або яго часткі) і візірнага прыстасавання без аптычнай сістэмы (гноман, армілярная сфера і інш.). Для большай дакладнасці вымярэнняў павялічваліся памеры адліковых кругоў, напрыклад, у пач. 15 ст. Улугбек пабудаваў пад Самаркандам секстант з радыусам круга 40 м. З 17 ст. ў вугламерных інструментах пры візіраванні карыстаюцца зрокавымі трубамі, вуглы павароту якіх вызначаюцца па дакладна падзеленых кругах (універсальны інструмент, вертыкальны круг, мерыдыянальны круг і інш.). Пачатак тэлескапічнай астраноміі звязаны з імем Г.Галілея, які з дапамогай падзорнай трубы зрабіў важныя астр. адкрыцці і растлумачыў іх. Выпрамяненне касм. целаў у радыёдыяпазоне даследуецца радыётэлескопамі. Захаванне дакладнага часу і выдача неабходных сігналаў часу ажыццяўляюцца з дапамогай астр. гадзіннікаў, хранометраў і хранографаў. Для апрацоўкі вынікаў назірання выкарыстоўваюцца ЭВМ. Да дэманстрацыйных прылад адносяць тэлурыі (мадэлі Сонечнай сістэмы) і планетарыі, якія даюць магчымасць на ўнутр. паверхні сферычнага купала наглядна дэманстраваць астр. з’явы.

Літ.:

Курс астрофизики и звездной астрономии. Т. 1. М., 1973;

Мартынов Д.Я. Курс практической астрофизики. М., 1967.

М.М.Міхельсон.

т. 2, с. 52

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)