ГА́ЗАВАЯ ДЫНА́МІКА,

раздзел гідрааэрамеханікі, які вывучае рух газападобных і вадкіх асяроддзяў з улікам сціскальнасці і іх узаемадзеянне з цвёрдымі целамі. Сучасная газавая дынаміка вывучае таксама цячэнне газаў пры высокіх т-рах, што суправаджаецца хім. (дысацыяцыя, гарэнне і інш.) і фіз. (іанізацыя, выпрамяненне і інш.) працэсамі. Да газавай дынаміцы адносяцца таксама радыяцыйная газавая дынаміка, дынаміка плазмы, дынаміка выбуху і дэтанацыі, дынамічная метэаралогія і інш. Газавая дынаміка цесна звязана з тэрмадынамікай.

Газавая дынаміка займаецца вывучэннем сіл, якія дзейнічаюць на самалёт, снарад, ракету, на лапаткі турбін, вызначэннем найбольш прыдатных (абцякальных) формаў гэтых цел, разлікам соплаў, дыфузараў, эжэктараў, эксперым. даследаваннямі ў аэрадынамічных трубах, мадэляваннем на ЭВМ і інш. Тэарэт. разлікі пераносяцца на натуру метадамі падобнасці тэорыі. Найб. важная характарыстыка газавых патокаў — лік Маха: М = ν/a (ν — скорасць газу, а — скорасць гуку ў газе). Пры скарасцях газаў, меншых за скорасць гуку ў газе (М<1), сціскальнасць газу надае патоку толькі якасныя змены, а пры скарасцях газу, большых за скорасць гуку ў газе (М>1), рух цела суправаджаецца ўзнікненнем ударнай хвалі і рэзкім ростам супраціўлення руху. Вялікі ўклад у развіццё газавай дынамікі зрабілі вучоныя: расійскі С.А.Чаплыгін, савецкія С.А.Хрысціяновіч, А.А.Дарадніцын, Л.І.Сядоў, ням. Л.Прандтль, Т.Маер, англ. Дж.І.Тэйлар і інш.

На Беларусі даследаванні па газавай дынаміцы пачаліся ў 1960-я г. ў АН Беларусі і БДУ. Вынікі даследаванняў па газавай дынаміцы выкарыстоўваюцца ў фізіцы плазмы, балістыцы, ракета- і турбамашынабудаванні і інш.

Літ.:

Абрамович Г.Н. Прикладная газовая динамика. Ч. 1—2. 5 изд. М., 1991;

Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. 2 изд. М., 1966.

Л.Я.Мінько.

т. 4, с. 424

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАЛІЗА́ТАР,

1) у оптыцы — прыстасаванне для выяўлення характару палярызацыі святла. Лінейныя аналізатары служаць для выяўлення лінейна (плоска) палярызаванага святла і вызначэння становішча яго плоскасці палярызацыі, ступені палярызацыі часткова палярызаванага святла. Як аналізатары выкарыстоўваюць палярызацыйныя прызмы, паляроіды, пласцінкі турмаліну і інш. Аналізатар для святла з кругавой і эліптычнай палярызацыяй звычайна складаюцца з аптычнага кампенсатара і лінейнага аналізатара. Гл. таксама Палярызатар.

2) У прамысловасці — прылада ці вымяральнае прыстасаванне хім. саставу газаў, вадкасцяў, цвёрдых і сыпкіх рэчываў. Паводле метаду аналізу бываюць цеплавыя, магн., мех., хім., электрахім., аптычныя, радыеізатопныя і інш.

Да арт. Аналізатар. Аптычная схема цукрамера: S — крыніца святла; D1, D2 — дыяфрагмы; O1 — аб’ектыў; 1 — палярызатар; 2 — трубка з растворам цукру; 3 — кампенсатар; 4 — аналізатар; O2 + OR — зрокавая труба; 5 — шкала; O3 — акуляр шкалы.

т. 1, с. 334

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВІХРАВЫ́ РУХ,

рух вадкасці (або газу), пры якім яе часціцы (элементарныя аб’ёмы) рухаюцца паступальна і аварочваюцца вакол некаторай імгненнай восі. Выяўляецца пры цячэнні рэальных (вязкіх) вадкасцей і газаў у трубаправодах або пры вонкавым абцяканні цел.

Віхравы рух абумоўлены тым, што розныя слаі вадкасці (газу) рухаюцца з рознымі скарасцямі (з-за наліпання скорасць часціц каля сценак роўная нулю і павялічваецца пры аддаленні ад іх). Колькасна віхравы рух апісваюць вектарам вуглавой скорасці вярчэння часціц, які наз. віхрам асяроддзя ў дадзеным пункце. Часціцы пры віхравым руху ўтвараюць віхравыя трубкі або асобныя слаі. Віхравая трубка можа мець пачатак і канец толькі на межах вадкасці (газу) або быць замкнёнай, напр. У вадзе на паверхні і дне ракі, у паветры на паверхні зямлі (смерч) і інш.

т. 4, с. 207

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЗЫ НАФТАПЕРАПРАЦО́ЎКІ,

сумесі газаў, якія ўтвараюцца пры перапрацоўцы нафты на нафтаперапрацоўчых заводах. Састаў залежыць ад працэсу перапрацоўкі (перагонка, тэрмічны і каталітычны крэкінг, каксаванне, каталітычны рыформінг, гідракрэкінг).

Газы нафтаперапрацоўкі маюць насычаныя і ненасычаныя, у асн. нізкамалекулярныя вуглевадароды (малекулы з 1—4 атамамі вугляроду), а таксама вадарод, серавадарод і невялікую колькасць арган. злучэнняў серы. На ўстаноўках першаснай перагонкі атрымліваюць нязначную колькасць раствораных у нафце (1—1,2% ад масы нафты) газападобных вуглевадародаў. Газы крэкінгу і каксавання маюць даволі многа алкенаў (напр., газы каксавання прыкладна маюць у сабе этылену 5, прапілену 6, бутану 4, ізабутэну 1% па масе). Газ каталітычнага рыформінгу мае толькі насычаныя вуглевадароды і да 60% (па аб’ёме) вадароду. Выкарыстоўваюць як паліва і сыравіну для хім. прам-сці.

Я.І.Шчарбіна.

т. 4, с. 434

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ІЗАТО́ПНЫ АБМЕ́Н,

працэс пераразмеркавання ізатопаў якога-н. элемента паміж рэчывамі ў час хім. рэакцый. Напр., калі хлорысты вадарод, абагачаны цяжкім ізатопам хлору, змяшаць з хлорам прыроднага ізатопнага саставу, то ў выніку І.а. хлор абагаціцца цяжкім ізатопам, а хлорысты вадарод збедніцца ім. Выкарыстоўваецца ў хім. даследаваннях для вывучэння элементарных стадый хім. працэсаў (гл. Ізатопныя індыкатары), для канцэнтравання патрэбнага ізатопу і інш.

Пры І.а. адбываецца замена аднаго ізатопу хім. элемента на іншы яго ізатоп у малекулах дадзенага рэчыва з захаваннем іх элементарнага саставу. Рэакцыі І.а. могуць ісці ў гамагенным (напр., у растворы паміж раствораным рэчывам і растваральнікам, у сумесі газаў) і гетэрагенным (напр., паміж цвёрдым ці вадкім рэчывам і нерастваральным газам) асяроддзі. Скорасць працякання І.а. вызначаецца механізмам рэакцый.

Э.А.Рудак.

т. 7, с. 177

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АТМАСФЕ́РА (ад грэч. atmos пара + сфера) Зямлі, газавая абалонка вакол Зямлі, якая ўтрымліваецца яе прыцяжэннем, верціцца разам з ёю і забяспечвае жыццядзейнасць расліннага і жывёльнага свету. Маса атмасферы каля 5,15×10​15 т (адна мільённая доля масы Зямлі). Палавіна яе заключана ў слоі да 5 км, 90% — да 16 км, вышэй за 100 км — толькі мільённая частка. Выразнай верхняй мяжы не існуе, атмасфера паступова пераходзіць у касм. прастору (гл. Космас). За фіз. мяжу прымаюць выш. 1000—1200 км, тэарэтычная мяжа — 42 тыс. км, дзе цэнтрабежная сіла вярчэння Зямлі ўраўнаважваецца яе прыцяжэннем. З вышынёй мяняюцца фіз. ўласцівасці атмасферы: ціск, шчыльнасць, т-ра. Ціск атмасферы на ўзр. м. на 1 см² 1013,25 гПа, на выш. 5 км ён змяншаецца на ½. Залежнасць ціску ад вышыні выражаецца бараметрычнай формулай. Шчыльнасць паветра на ўзр. м. 1,27—1,30 кг/м³, на паверхні Зямлі ў Еўропе ў сярэднім 1,25 кг/м³, на выш. 20 км 0,087 кг/м³, на выш. 750 км менш за 10-13 кг/м³. Т-ра характарызуецца больш складанай залежнасцю ад вышыні.

Будова. Атмасфера мае выразную слаістую структуру. У аснову падзелу пакладзена вертыкальнае размеркаванне т-ры, паводле якога вылучаюць сферы і слаі-паўзы паміж імі. Ніжняя частка атмасферы — трапасфера, знаходзіцца над паверхняй Зямлі да выш. 8—10 км у палярных, 16—18 км у экватарыяльных шыротах. Характарызуецца паніжэннем т-ры з вышынёй каля 6,5 °C на 1 км. Пераходнаму слою (таўшчынёй ад соцень метраў да 2 км) паміж трапасферай і стратасферайтрапапаўзе — уласціва ізатэрмія. Стратасфера распасціраецца да 50 км, у ніжняй частцы яе т-ра пастаянная, з выш. 25—30 км павышаецца ў сярэднім на 0,3 °C на 100 мазанасферы). Паміж стратасферай і мезасферай размяшчаецца стратапаўза, у якой т-ра блізкая да 0 °C. У мезасферы (да выш. 80 км) т-ра зніжаецца на 0,35 °C на 100 м вышыні (да -90 °C), развіваецца канвекцыя (вертыкальнае перамешванне), утвараюцца серабрыстыя воблакі. У мезасферы адзначаецца іанізацыя часцінак газу. Мезапаўза знаходзіцца на выш. 80—85 км, ёй уласціва ізатэрмія ці слабае зніжэнне т-ры. Вышэй размешчана тэрмасфера (да 800—1000 м), дзе т-ра зноў рэзка павышаецца за кошт паглынання прамога сонечнага выпрамянення і дасягае 1500—2000 °C. Тэрмасфера адпавядае іанасферы, дзе паветра моцна іанізаванае ў выніку дысацыяцыі малекул газаў пад уздзеяннем ультрафіялетавай, рэнтгенаўскай і карпускулярнай радыяцыі, што з’яўляецца прычынай высокай т-ры, палярных ззянняў, свячэння атмасферы. Знешняя атмасфера — экзасфера, дзе адбываецца дысіпацыя газаў, іх часцінкі (пераважна атамы вадароду) рассейваюцца ў касм. прасторы і ўтвараюць карону Зямлі.

Састаў. Атмасфера паветра — сумесь газаў з дамешкам завіслых цвёрдых і вадкіх часцінак. Паводле хім. саставу вылучаюць гамасферу (да 90—100 км) з нязменнымі суадносінамі асн. газаў і гетэрасферу, дзе стан газаў і іх суадносіны вельмі зменлівыя. У сухім паветры гамасферы азот складае 78%, кісларод — 21, аргон — 0,9, вуглякіслы газ — 0,03%, астатняе — крыптон, ксенон, неон, гелій, вадарод, азон, ёд, радон, метан, аміяк і інш. Сучасны састаў атмасферы спрыяльны для жыцця на Зямлі: кісларод служыць для дыхання жывых арганізмаў, вуглякіслы газ — для стварэння арган. рэчываў раслін у працэсе фотасінтэзу. У фіз. працэсах, якія адбываюцца ў атмасферы, найб. актыўныя вадзяная пара, азон, вуглякіслы газ і атм. аэразолі. Вадзяная пара канцэнтруецца ў ніжніх слаях трапасферы (ад 0,1—0,2% у палярных шыротах да 3% у экватарыяльных), з вышынёй яе колькасць памяншаецца (на выш. 1,5—2 км на 50%), у нязначнай колькасці ёсць да выш. 15—20 км. Азон затрымлівае асн. частку ультрафіялетавага выпрамянення Сонца, гібельнага для ўсяго жывога на Зямлі. Канцэнтруецца ў азанасферы. Вуглякіслы газ здольны паглынаць даўгахвалевае выпрамяненне Зямлі і ствараць парніковы эфект атмасферы. Колькасць вуглякіслага газу павялічваецца ў сувязі з узмацненнем антрапагеннага ўздзеяння на атмасферу (мяркуюць, што да 2000 г. яго будзе 0,0375%). Атмасферныя аэразолі (завіслыя ў паветры цвёрдыя і вадкія часцінкі) таксама затрымліваюць цеплавое выпрамяненне паверхні Зямлі і ўплываюць на бачнасць у атмасферы. Прымеркаваныя да прыземных слаёў, частка іх пранікае ў стратасферу, дзе на выш. 15—20 км утвараецца аэразольны слой Юнге.

У гетэрасферы павялічваецца колькасць лёгкіх газаў, адбываецца дысацыяцыя малекул паветра і значная іанізацыя. Выразная змена стану газаў атмасферы адбываецца на выш. 100—210 км, дзе пераважае атамарны кісларод над малекулярнымі азотам і кіслародам. На выш. 500 км малекулярнага кіслароду практычна няма, вышэй за 600 км пераважае гелій, на выш. ад 2 да 20 тыс. км пашырана вадародная карона Зямлі. З верхняй часткай атмасферы звязаны радыяцыйныя паясы Зямлі: унутраны на выш. 500—1600 км і вонкавы, утвораныя электронамі з высокай энергіяй.

Паветраныя плыні. Вынікам неаднароднасці т-ры атмасферы па вертыкалі і нераўнамернага награвання палярных і экватарыяльных шырот, сухазем’я і мора з’яўляецца сістэма буйнамаштабных працэсаў — агульная цыркуляцыя атмасферы. Да яе належаць плыні ніжняй часткі трапасферы: пастаянныя — пасаты і сезонныя — мусоны, заходні перанос паветраных мас, канвекцыя, цыклоны і антыцыклоны і інш. Паблізу трапапаўзы, дзе існуе кантрастнасць т-ры, а таксама ў азонавым слоі на выш. 20—25 км утвараюцца магутныя струменныя плыні. Скорасць ветру ў верхняй стратасферы дасягае 100—150 м/сек. У тэрмасферы яна павялічваецца, тут адбываюцца прыліўныя рухі пад уздзеяннем Месяца і Сонца. Рухомасць атмасферы надае ёй ролю рэгулятара цеплаабмену Зямлі з космасам, радыяцыйнага і воднага балансу. Працэсы ўзаемадзеяння атмасферы і акіяна істотна ўплываюць на клімат Зямлі. Атмасфера мае электрычнае поле, якое фарміруецца пад уздзеяннем адмоўнага электрычнага поля Зямлі.

Паходжанне. Сучасная зямная атмасфера мае другаснае паходжанне, яна ўтварылася пасля ўзнікнення Зямлі ў выніку ўзаемадзеяння працэсу дэгазацыі з пародамі літасферы. Састаў атмасферы зменьваўся на працягу ўсёй гісторыі Зямлі, у тым ліку і пад уплывам дзейнасці чалавека. Вылучаюць 2 асн. этапы — бескіслародны (2 млрд. гадоў назад) і кіслародны; маса кіслароду значна павялічылася ў фанеразоі пасля з’яўлення расліннасці на сушы.

Вывучэнне атмасферы пачалося ў антычны час. Навука пра атмасферу — метэаралогія сфарміравалася ў 19 ст. Для назіранняў за атмасферай створана сетка метэаралагічных станцый і пастоў, выкарыстоўваюцца метады вертыкальнага зандзіравання атмасферы, радыёлакацыя, пеленгацыя, самалёты, аўтам. аэрастаты, спец. судны, ракеты і метэаралагічныя спадарожнікі. У Беларусі назіранне за атмасферай праводзіцца на метэастанцыях гідраметэаралагічнай службы, у прамысл. цэнтрах вывучаюць і прагназіруюць ступені тэхнагеннага забруджвання; праводзяцца даследаванні радыенукліднага забруджвання атмасферы пасля катастрофы на Чарнобыльскай АЭС.

Літ.:

Атмосфера: Справ. Л., 1991;

Будыко М.И., Ронов А.Б., Яншин А.Л. История атмосферы. Л., 1985;

Бримблкумб П. Состав и химия атмосферы: Пер. с англ. М., 1988.

Г.В.Валабуева.

т. 2, с. 74

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БО́ЛЬЦМАН ((Boltzmann) Людвіг) (20.2.1844, Вена — 5.9.1906),

аўстрыйскі фізік-тэарэтык, адзін з заснавальнікаў класічнай стат. фізікі. Чл. Венскай (1895), Пецярбургскай (1899) і інш. АН. Скончыў Венскі ун-т (1866). Праф. ун-таў у Грацы (1869—73, 1876—89), Вене (1873—76, 1894—1900 і з 1903), Мюнхене (1889—94) і Лейпцыгу (1900—02). Навук. працы па кінетычнай тэорыі газаў, тэрмадынаміцы, тэорыі выпрамянення, матэматыцы, механіцы і інш. Разам з Дж.К.Максвелам распрацаваў Больцмана статыстыку, устанавіў сувязь паміж энтрапіяй і тэрмадынамічнай імавернасцю (гл. Больцмана прынцып), заклаў асновы тэорыі неабарачальных працэсаў, у 1884 тэарэтычна адкрыў адзін з законаў цеплавога выпрамянення (гл. Стэфана—Больцмана закон выпрамянення). Адстойваў матэрыялістычныя пазіцыі ў фізіцы і тэорыі пазнання, абвергнуў гіпотэзу «цеплавой смерці» Сусвету.

Літ.:

Голин Г.М., Филонович С.Р. Классики физической науки. М., 1989. С. 540.

т. 3, с. 210

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛІТАФІ́ЛЬНЫЯ ЭЛЕМЕ́НТЫ,

група хім. элементаў у геахім. класіфікацыі, якія маюць вонкавую 8-электронную абалонку (паводле тыпу інертных газаў) і размяшчаюцца на ўчастках змяншэння крывой атамных аб’ёмаў. Складаюць 93% асноўнай масы мінералаў зямной кары і 97% масы солевага саставу акіянічнай вады. Да Л.э. адносяцца 55 элементаў перыядычнай сістэмы: кісларод O, крэмній Si, алюміній Al, тытан Ti, бор B, вуглярод C і інш., шчолачныя і шчолачназямельныя металы, галагены і многія рэдкія элементы. Л.э. пераважна парамагнітныя. Уваходзяць у асноўным у састаў сілікатаў, пашыраны таксама іх аксіды, галагеніды, карбанаты, сульфаты, фасфаты. Шчыльнасць злучэння Л.э. ад 2 10​3 да 4 10​3 кг/м³. Групу Л.э. вылучыў у сваёй геахім. класіфікацыі ў 1924 В.М.Гольдшміт. Дапоўніў у 1952 Э.Садэцкі-Кардаш. Па класіфікацыі А.П.Вінаградава да Л.э. адносяцца таксама атмафільныя элементы.

У.Я.Бардон.

т. 9, с. 299

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАГНІ́ТНАЯ ВЯ́ЗКАСЦЬ,

1) у ферамагнетыках — запазненне ў часе змены значэнняў намагнічанасці, магнітнай пранікальнасці і інш. характарыстык магнетыка ад змены знешняга магн. поля (наз. таксама магнітнае паслядзеянне).

Разам з гістэрэзісам і віхравымі токамі абумоўлівае страты энергіі пры перамагнічванні ферамагнетыка ў пераменным полі. Выклікаецца рознымі прычынамі ў залежнасці ад структуры магнетыка, умоў намагнічвання і т-ры, у выніку чаго яго намагнічанасць устанаўліваецца пасля змены знешняга магн. поля праз некат. час (ад 1 нс да некалькіх мінут і гадзін). Напр., пры аперыядычных зменах магн. поля пры значэннях яго напружанасці, блізкіх да каэрцытыўнай сілы, М.в абумоўліваецца віхравымі мікратокамі, якія ўзнікаюць у магн. правадніках пры руху сценак магн. даменаў.

2) М.в. у магнітнай гідрадынаміцыфіз. велічыня, якая характарызуе кінематычныя і дынамічныя ўласцівасці эл,праводных вадкасцей і газаў пры іх руху ў магн. полі.

т. 9, с. 481

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗАКО́НЫ І ЗВЫ́ЧАІ ВАЙНЫ́,

сукупнасць прынцыпаў і норм міжнар. права, якія рэгулююць адносіны паміж дзяржавамі па пытаннях, звязаных з вядзеннем вайны. Абмяжоўваюць выбар сродкаў і метадаў узбр. барацьбы, забараняюць выкарыстанне найб. жорсткіх з іх, устанаўліваюць крымін. адказнасць за ваенныя злачынствы, чым аб’ектыўна садзейнічаюць абмежаванню маштабаў узбр. канфліктаў. Пачалі складвацца даўно. У 19 ст. прыняты першыя міжнар. акты аб правілах вядзення вайны. Агульнапрызнаныя З. і з.в. ўвасоблены ў Гаагскіх канвенцыях 1899, 1907, 1954, Жэнеўскім пратаколе 1925 аб забароне выкарыстання на вайне ўдушлівых, ядавітых і інш. падобных газаў і бактэрыял. сродкаў, Жэнеўскіх канвенцыях 1949 аб абароне ахвяр вайны, Канвенцыі 1980 аб забароне або абмежаванні некат. відаў звычайнай зброі, якія лічацца празмерна жорсткімі або маюць невыбіральнае дзеянне, у статутах і прыгаворах Нюрнбергскага і Такійскага Міжнароднага ваен. трыбуналаў.

т. 6, с. 506

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)