рускі сав. хімік-арганік і тэхнолаг, арганізатар анілінафарбавай прам-сці ў СССР. Ганаровы чл.АНСССР (1935). Скончыў Вышэйшую тэхн. школу ў Берліне (1882). Працаваў у Германіі. З 1918 у Маскоўскім ун-це, з 1925 у «Анілтрэсце», з 1931 у Ін-це арган. паўпрадуктаў і фарбавальнікаў. Навук. працы па хіміі фарбавальнікаў. Адкрыў утварэнне α-сульфа- і дысульфакіслот пры сульфіраванні антрахінону ў прысутнасці ртуці (1891). Распрацаваў спосаб атрымання першага сіняга кіслотнага антрахінонавага фарбавальніка, тэхналогію атрымання антрахінону акісленнем антрацэну (1928—32, разам з супрацоўнікамі). Прапанаваў метады атрыманая новых сульфакіслот антрахінону, кіслотных і кубавых антрахінонавых фарбавальнікаў (1899—1914), спосаб абсарбцыйнага фарбавання (1911).
Руска-беларускі слоўнік НАН Беларусі, 10-е выданне (2012, актуальны правапіс)
АМАЛЬГАМА́ЦЫЯў металургіі,
спосаб атрымання металаў з рудаў з дапамогай ртуці. Пры змочванні ртуццю металы ўтвараюць амальгамы і ў такім выглядзе аддзяляюцца ад пустой пароды і пяску. Амальгамацыю выкарыстоўваюць для выдзялення высакародных металаў (пераважна золата) са здробненых рудаў ці канцэнтратаў (у спалучэнні з тэхнічна больш дасканалымі працэсамі, напр.цыянаваннем), перапрацоўкі адходаў лёгкіх металаў (у другаснай металургіі), электралітычнага атрымання рэдкіх металаў (індыю, галію і інш.).
Амальгамы пасля насычэння металам адмываюць, фільтруюць, адціскаюць і награваюць да 800—850 °C, выдаляюць ртуць. Атрыманы «чарнавы» метал ідзе на афінаж, ртуць вяртаюць на амальгамацыю. Пры неабходнасці амальгамацыю актывуюць растворамі сернай к-ты ці вапны, выкарыстоўваюць таксама ртуць з дамешкамі натрыю ці цынку. Спосабам амальгамацыі выдзяляюць з руды 50—70% золата.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЫСОКАТЭМПЕРАТУ́РНАЯ ЗВЫШПРАВО́ДНАСЦЬ,
звышправоднасць з высокай крытычнай тэмпературай пераходу (TK) у звышправодны стан. Адкрыта ў 1986—87. Назіраецца ў аксідных злучэннях, якія атрымліваюцца керамічнай тэхналогіяй ці гарачым прасаваннем. Іх уласцівасці залежаць ад умоў адпалу, ступені замяшчэння катыёнаў, кіслародных дэфектаў і інш. умоў. Напр., аксідныя злучэнні, атрыманыя на аснове ітрыю, вісмуту, талію і ртуці, маюць TK, вышэйшую за тэмпературу кіпення вадкага азоту (110—133 К). На Беларусі высокатэмпературная звышправоднасць даследуецца ў Ін-це фізікі цвёрдага цела і паўправаднікоў і Фізікатэхн. ін-це АН Беларусі, БДУ, Бел. ун-це інфарматыкі і радыёэлектронікі.
Літ.:
Физнческие свойства высокотемпературных сверхпроводников: Пер. с англ. М., 1990;
Электронная структура и физико-химические свойства высокотемпературных сверхпроводников. М., 1990.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МА́ЙЕР (Мікалай Арцёмавіч) (н. 9.1. 1932, г. Ніжні Ноўгарад, Расія),
бел. хімік-арганік. Чл.-кар.Нац.АН Беларусі (1991), д-рхім.н. (1976), праф. (1989). Скончыў Горкаўскі дзярж.ун-т (1954). З 1956 у Ін-це хіміі, з 1959 у Ін-це фіз.арган. хіміі Нац.АН Беларусі. Навук. працы па сінтэзе і даследаванні пераўтварэнняў металаарган. злучэнняў. Адкрыў рэакцыю ініцыіраванага дэкарбаксіліравання дыацылатаў ртуці (1954, разам з Р.А.Разуваевым, Ю.А.Альдэкопам). Распрацаваў метады сінтэзу ртутнаарган. злучэнняў і метады электрахім. сінтэзу металацэнавых і металакарбаранавых злучэнняў жалеза, кобальту і нікелю.
Тв.:
Введение в элементоорганическую химию. Мн., 1973 (разам з Ю.А.Альдэкопам);
Синтез металлоорганических соединений декарбоксилированием ацилатов металлов. Мн., 1976 (з ім жа).
Руска-беларускі слоўнік НАН Беларусі, 10-е выданне (2012, актуальны правапіс)
ПАВЕ́РХНЕВАЕ НАЦЯЖЭ́ННЕ,
сіла, якая дзейнічае ў плоскасці, датычнай да паверхні падзелу 2 фаз (напр., вадкасці і яе насычанай пары) і імкнецца скараціць паверхню да мінімуму пры зададзеных аб’ёмах фаз; важнейшая тэрмадынамічная характарыстыка такіх паверхняў. Залежыць ад прыроды датычных фаз і т-ры.
Абумоўлена нескампенсаванасцю сіл міжмалекулярнага ўзаемадзеяння ў паверхневым (міжфазным) слоі. Стан паверхні на мяжы 2 фаз характарызуецца каэфіцыентам П.н. σ, які роўны адносінам П.н. да даўжыні контура, што абмяжоўвае паверхню, і лікава роўны рабоце абарачальнага працэсу ўтварэння адзінкі плошчы паверхні падзелу фаз (або цел). Адзінка σ у СІ — ньютан на метр. Напр., пры 20 °C для вады σ = 0,0728 Н/м, для ртуці σ = 0,484 Н/м. Пры павелічэнні т-ры П.н. змяншаецца і поўнасцю знікае пры крытычнай т-ры (гл.Крытычны стан).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЗАНА́ЛЬНАСЦЬ РУ́ДНЫХ РАДО́ВІШЧАЎ,
заканамерная змена ў прасторы мінер. або структурна-тэкстурных асаблівасцей руд.
Адрозніваюць занальнасць першасную, абумоўленую працэсамі фарміравання радовішчаў карысных выкапняў, і другасную, звязаную з пераўтварэннем рудных цел каля паверхні Зямлі пры акісленні. Вылучаюць занальнасць: рудных правінцый (фарміраванне груп радовішчаў паслядоўна разам з эвалюцыяй зямной кары), рудных палёў (чаргаванне пакладаў руд розных металаў пры пераходзе ад аднаго краю поля да другога), рудных цел (змена мінер. і метал. саставу руд у межах цела). Тэмпературная рудная занальнасць утвараецца ад паніжэння ціску і т-ры рудаўтваральных раствораў па меры аддалення ад магматычнага ачага. На фарміраванне З.р.р. значна ўплываюць рудаўтваральныя растворы пры пульсацыйным паступленні ў прастору рудаадкладання. Вертыкальная занальнасць заключаецца ў змене (з набліжэннем да паверхні Зямлі) высокатэмпературных радовішчаў вальфраму, волава, малібдэну і вісмуту сярэдне- і нізкатэмпературнымі радовішчамі медзі, свінцу, цынку, сурмы і ртуці. Седыментацыйная занальнасць узнікае ў сувязі з рознай геахім. рухомасцю металаў.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІДРЫ́ДЫ,
хімічныя злучэнні вадароду з інш. элементамі. Простыя ці бінарныя гідрыды вядомыя для ўсіх элементаў, акрамя інертных газаў, плацінавых металаў (за выключэннем паладыю), серабра, золата, кадмію, ртуці, індыю, талію.
Гідрыды шчолачных і шчолачназямельных (акрамя магнію) металаў — солепадобныя іонныя злучэнні. Крышт. рэчывы, устойлівыя пры адсутнасці вільгаці (напр., гідрыды літыю LiH tпл 680 °C, кальцыю CaH2 tпл 815 °C). Пры ўзаемадзеянні з вадой утвараюць шчолачы і вадарод. Гідрыды пераходных металаў і рэдказямельных элементаў (металападобныя гідрыды) светла- ці цёмна-шэрыя крышт. рэчывы з метал. бляскам, устойлівыя на паветры пры пакаёвай т-ры (напр., гідрыды тытану TiH2 мае т-ру раскладання 600—700 °C). Гідрыды неметалаў — кавалентныя злучэнні, у асн. газападобныя рэчывы (высокатаксічныя, асабліва гідрыды мыш’яку AsH3 і фосфару PH3). Моцныя аднаўляльнікі, пры 100—300 °C раскладаюцца да элемента і вадароду. Бор і крэмній утвараюць вышэйшыя гідрыды: боравадароды і сіланы. Выкарыстоўваюць як аднаўляльнікі ў арган. сінтэзе і пры атрыманні металаў, як каталізатары, у вытв-сці паўправадніковых матэрыялаў (германію, крэмнію). Гл. таксама Алюмінію злучэнні, Літыю злучэнні.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГАЗАРАЗРА́ДНЫЯ КРЫНІ́ЦЫ СВЯТЛА́,
газаразрадныя прылады, у якіх электрычная энергія пераўтвараецца ў аптычнае выпрамяненне пры праходжанні току праз рэчыва ў газападобным стане. Маюць шкляную, кварцавую або метал. (з празрыстым акном) абалонку з герметычна ўпаянымі электродамі, запоўненую газам (звычайна інертным) або парай металаў (напр., ртуці) пад ціскам. Бываюць газаразрадныя крыніцы святла з адкрытымі электродамі, якія працуюць у паветры або струмені газу (напр., вугальная дуга).
У газаразрадных крыніцах святла адбываецца тлеючы або дугавы разрад (гл.Электрычныя разрады ў газах, Іанізацыя). Імпульсныя лямпы з ксенонавым запаўненнем (трубчастыя, прамыя, спіральныя і U-падобныя) выкарыстоўваюцца для напампоўкі лазераў, імпульснага асвятлення пры фатаграфаванні, у страбаскапіі, аптычнай лакацыі і інш. Дугавыя ксенонавыя лямпы трубчастай або сферычнай формы маюць высокую светлавую аддачу і спектр выпрамянення, блізкі да спектра сонечнага святла ў бачнай вобласці. Выкарыстоўваюцца для асвятлення вял. плошчаў, стадыёнаў і інш., а таксама ў святлокапіравальных і фоталітаграфічных апаратах, праекцыйнай апаратуры. Дугавыя натрыевыя лямпы ў спалучэнні з ртутнымі выкарыстоўваюцца для асвятлення дарог, тунэляў, аэрадромаў і інш. У якасці эталонных крыніц святла ў атамна-абсарбцыйных і атамна-флюарэсцэнтных спектрафатометрах, інтэрферометрах, рэфрактометрах і інш. прыладах выкарыстоўваюць спектральныя лямпы.