БЛІНЫ́,

традыцыйны бел. мучны выраб; вядомы і інш. слав. народам. Лакальная назва блінцы. Пшанічную, жытнюю, ячную, грэцкую ці аўсяную муку замешваюць на малацэ або сыраквашы, сыроватцы. Бліны рабіліся кіслыя, на рошчыне, і прэсныя, на содзе. У цеста часам дадаюць яйкі, цукар. Пякуць на подмазцы. Падаюць з мачанкай, падсмажаным салам, малаком, смятанай. З пшанічнай мукі пякуць невял. тоўстыя бліны — аладкі і тонкія — наліснікі. Шырока вядомы на ўсёй Беларусі.

т. 3, с. 193

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАСУЛЬФА́ТЫ,

бісульфаты, гідрагенсульфаты, кіслыя солі сернай кіслаты. У цвёрдым стане вылучаны гідрасульфаты шчолачных металаў (напр., гідрасульфат калію KHSO4, бясколерныя крышталі, tпл 220 °C, шчыльн. 2400 кг/м³).

Гідрасульфатыц шчолачна-зямельных і некаторых інш. металаў існуюць толькі ў водных растворах. Атрымліваюць узаемадзеяннем сернай к-ты з сульфатамі і хларыдамі адпаведных металаў. Выкарыстоўваюць гідрасульфаты калію і натрыю як кампанент флюсу ў металургіі, рэагент для пераводу (сплаўленнем) нерастваральных аксідаў (напр., аксіды алюмінію, жалеза і інш.) у растваральныя сульфаты.

т. 5, с. 232

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАХІ́МІЯ ЛАНДША́ФТУ,

галіна ландшафтазнаўства, якая вывучае састаў і міграцыю хім. элементаў у ландшафце. Узнікла ў 1940-я г. на мяжы геаграфіі і геахіміі. Заснавальнік Б.Б.Палынаў.

У большасці ландшафтаў пераважае біягенная міграцыя, якая выяўляецца ў біял. кругавароце атамаў пры ўзнікненні і распадзе арган. рэчыва. Пры гэтым сонечная энергія ператвараецца ў дзейную хім. энергію. У водах ландшафтаў пераважае фіз.-хім. міграцыя. Паводле характэрных іонаў прыродных вод адрозніваюць ландшафты кіслыя (H​+), кальцыевыя (Ca​+) і інш. Участкі зямной паверхні, дзе міграцыя хім. элементаў мае якасныя асаблівасці, вылучаюцца як геахім. ландшафты. Напр., геахім. ландшафты Бел. Палесся кіслыя, бедныя воднымі мігрантамі, з залішняй колькасцю іонаў вадароду (H​+) і жалеза (Fe​++), з недахопам ёду і інш. біялагічна важных элементаў. Асаблівасці міграцыі хім. элементаў пакладзены ў аснову геахім. класіфікацыі ландшафтаў і складання ландшафтна-геахім. картаў. Даныя геахіміі ландшафту выкарыстоўваюцца пры геахімічнай разведцы карысных выкапняў, у медыцыне, курарталогіі, пры ацэнцы навакольнага асяроддзя, для вывучэння ландшафтаў мінулых геал. эпох.

Літ.:

Перельман А.И. Геохимия ландшафта. 2 изд. М., 1975;

Лукашев К.И., Вадковская И.К. Геохимические процессы в ландшафтах Белоруссии. Мн., 1975.

т. 5, с. 126

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЭРО́БНЫЯ АРГАНІ́ЗМЫ,

аэробы (ад аэра... + грэч. bios жыццё), арганізмы, здольныя жыць толькі ў прысутнасці малекулярнага кіслароду. Да іх належаць амаль усе жывёлы і расліны, а таксама многія грыбы і мікраарганізмы. Неабходную для жыццядзейнасці энергію яны атрымліваюць за кошт акісляльных працэсаў з удзелам кіслароду. Аблігатныя (строгія) аэробныя арганізмы развіваюцца толькі ў прысутнасці кіслароду (напр., воцатна-кіслыя бактэрыі), факультатыўныя (умоўныя) — пры паніжанай яго колькасці ці без кіслароду (дрожджы). Асобнае месца сярод аэробных арганізмаў займаюць арганізмы, здольныя да фотасінтэзу, — цыянабактэрыі, водарасці, сасудзістыя расліны. Кісларод, які вылучаецца гэтымі арганізмамі, забяспечвае ўсіх астатніх аэробаў. Арганізмы, здольныя развівацца пры нізкай канцэнтрацыі кіслароду (≤ 1 мг/л), наз. мікрааэрафіламі. Гл. таксама Анаэробныя арганізмы.

т. 2, с. 176

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРАНАДЫЯРЫ́Т,

магматычная інтрузіўная поўнакрышт. горная парода, прамежкавая паводле саставу паміж гранітамі і кварцавым дыярытам. Складаецца з плагіяклазу (65—90%), каліева-натрыевага палявога шпату, кварцу, рагавой падманкі, біятыту, радзей піраксену і акцэсорных мінералаў (апатыт, магнетыт, сфен і інш.). Колер зеленавата-шэры. У залежнасці ад структуры і тэкстуры адрозніваюць гранадыярыт: парфірападобныя, раўнамерна-, буйна-, сярэдне-, дробна-, тонказярністыя, аплітавыя, пегматоідныя, масіўныя, у палоску, плямістыя і інш. Глыбінны аналаг дацыту. Шчыльн. 2700—2900 кг/м³. Трываласць на сцісканне 100—300 МПа. Гранадыярыт развіты ва ўсіх раёнах, дзе пашыраны кіслыя глыбінныя пароды. На Беларусі вядомы ў саставе крышт. фундамента. Выкарыстоўваецца як абліцовачны камень і друз.

У.Я.Бардон.

т. 5, с. 405

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

кіслата́, ы́, ДМ ‑лаце́, ж.

1. Уласцівасць кіслага. // Пра што‑н. кіслае. Не яблык — адна кіслага.

2. мн. кісло́ты, ‑ло́т. Хімічныя злучэнні (звычайна кіслыя на смак), якія змяшчаюць вадарод, здольны замяшчацца металам пры ўтварэнні солей.

•••

Алеінавая кіслата — адна з найбольш пашыраных у прыродзе кіслот, якая ўваходзіць у састаў усіх алеяў і жывельных тлушчаў.

Аскарбінавая кіслата — арганічнае рэчыва, неабходнае для нармальнага абмену рэчываў у арганізме; вітамін C.

Вінная кіслата — кіслата, якая ўваходзіць у састаў ягаднага і вінаграднага соку.

Вугальная кіслата — злучэнне вуглякіслага газу з вадою (скарыстоўваецца ў харчовай прамысловасць тэхніцы, медыцыне і пад.).

Карболавая кіслата — ядавітая вадкасць з характэрным пахам, якая скарыстоўваецца як антысептычны і дэзінфекцыйны сродак; раствор фенолу.

Лімонная кіслата — арганічная кіслата, якая змяшчаецца ў плодзе лімона і некаторых іншых раслінах (скарыстоўваецца ў кулінарыі, медыцыне, для фарбавання і інш.).

Плавіковая кіслата — водны раствор фторыстага вадароду.

Сінільная кіслата — ядавітая бясколерная вадкасць з пахам горкага міндалю; цыяністы вадарод.

Фоліевая кіслата — проціанемічны вітамін.

Шчаўевая кіслата — найпрасцейшая арганічная кіслата, якая змяшчаецца ў шчаўі, кісліцы і інш.

Яблычная кіслата — арганічнае злучэнне, якое змяшчаецца ў няспелых яблыках, вінаградзе, рабіне і інш. (скарыстоўваецца ў харчовай прамысловасць).

Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)

БЯЛКІ́,

пратэіны, прыродныя высокамалекулярныя арган. рэчывы, малекулы якіх складаюцца з астаткаў амінакіслот. Адзін з асн. хім. кампанентаў абмену рэчываў і энергіі жывых арганізмаў. Абумоўліваюць іх будову, гал. адзнакі, функцыі, разнастайнасць і адаптацыйныя магчымасці, удзельнічаюць ва ўтварэнні клетак, тканак і органаў (структурныя бялкі), у рэгуляцыі абмену рэчываў (гармоны), з’яўляюцца запасным пажыўным рэчывам (запасныя бялкі). Складаюць матэрыяльную аснову амаль усіх жыццёвых працэсаў: росту, стрававання, размнажэння, ахоўных функцый арганізма (гл. Антыцелы, Імунаглабуліны, Таксіны), утварэння генет. апарату і перадачы спадчынных прыкмет (нуклеапратэіды), пераносу ў арганізме рэчываў (транспартныя бялкі), скарачэнняў мышцаў, перадачы нерв. імпульсаў і інш.; ферменты бялковай прыроды выконваюць у арганізме спецыфічныя каталітычныя функцыі, выключна важнае значэнне ў рэгуляцыі фізіял. працэсаў маюць бялкі.-гармоны. Сінтэзуюцца бялкі з неарган. рэчываў раслінамі і некат. бактэрыямі. Жывёлы і чалавек атрымліваюць гатовыя бялкі з ежы. З прадуктаў іх расшчаплення (пептыдаў і амінакіслот) у арганізме сінтэзуюцца спецыфічныя ўласныя бялкі, дзе яны няспынна разбураюцца і замяняюцца зноў сінтэзаванымі. Біясінтэз бялкоў ажыццяўляецца па матрычным прынцыпе з удзелам ДНК, РНК, пераважна ў рыбасомах клетак і інш. Паслядоўнасць амінакіслот у бялках адлюстроўвае паслядоўнасць нуклеатыдаў у нуклеінавых к-тах. Паводле паходжання і крыніц атрымання бялкоў падзяляюцца на раслінныя, жывёльныя і бактэрыяльныя, паводле хім. саставу — на простыя (некан’югіраваныя) — пратэіны і складаныя (кан’югіраваныя) — пратэіды. Простыя складаюцца з астаткаў амінакіслот, што злучаны паміж сабою пептыднай сувяззю (—NH—CO) у доўгія ланцугі — поліпептыды, складаныя — з простага бялку, злучанага з небялковым арган. ці неарган. кампанентам непептыднай прыроды, т.зв. прастэтычнай групай, далучанай да поліпептыднай часткі. Сярод складаных бялкоў паводле тыпу прастэтычнай групы вылучаюць нуклеапратэіды, фосфапратэіды, глікапратэіды, металапратэіды, гемапратэіды, флавапратэіды, ліпапратэіды і інш. У састаў бялкоў уваходзіць ад 50 да 6000 і больш астаткаў 20 амінакіслот, што ўтвараюць складаныя поліпептыдныя ланцугі. Амінакіслотны састаў розных бялкоў неаднолькавы і з’яўляецца іх важнейшай характарыстыкай, а таксама мерай харч. каштоўнасці. Паслядоўнасць амінакіслот у кожным бялку вызначаецца паслядоўнасцю монануклеатыдных буд. блокаў у асобных адрэзках малекулы ДНК. Вядома амінакіслотная паслядоўнасць некалькіх соцень бялкоў (напр., адрэнакортыкатропнага гармону чалавека, рыбануклеазы, цытахромаў, гемаглабіну і інш.). Парушэнні амінакіслотнай паслядоўнасці ў малекуле бялку выклікаюць т.зв. малекулярныя хваробы. Амінакіслотную паслядоўнасць поліпептыднага ланцуга для малекулы гармону інсуліну ўстанавіў англ. біяхімік Ф.Сэнгер (1953). Звесткі пра колькасць адрозненняў у амінакіслотных паслядоўнасцях гамалагічных бялкоў, узятых з розных відаў арганізмаў, выкарыстоўваюць пры складанні эвалюцыйных картаў, якія адлюстроўваюць паслядоўныя этапы ўзнікнення і развіцця пэўных відаў арганізмаў у працэсе эвалюцыі.

Агульны хім. састаў бялкоў (у % у пераліку на сухое рэчыва): C—50—55, O—21—23, N—15—18, H—6—7,5, S—0,3—2,5, P—1—2, і інш. Малекулярная маса ад 5 тыс. да 10 млн. Большасць бялкоў раствараецца ў вадзе і ўтварае малекулярныя растворы. Па форме малекул адрозніваюць бялкі фібрылярныя (ніткападобныя) і глабулярныя (згорнутыя ў кампактную структуру сферычнай формы); па растваральнасці ў вадзе, растворах нейтральных соляў, шчолачах, кіслотах і арган. растваральніках вылучаюць альбуміны, гістоны, глабуліны, глютэліны, праламіны, пратаміны і пратэіноіды. Бялкі маюць кіслыя карбаксільныя і амінныя групы, таму ў растворах яны амфатэрныя (маюць уласцівасці асноў і к-т). Пры гідролізе яны распадаюцца да амінакіслот; пад уплывам розных фактараў здольныя да дэнатурацыі і каагуляцыі, уступаюць у рэакцыі акіслення, аднаўлення, нітравання і інш. Пры пэўных значэннях pH у растворах бялкоў пераважае дысацыяцыя тых ці інш. груп, што надае ім адпаведны зарад і выклікае рух у электрычным полі — электрафарэз. Структура бялкоў характарызуецца амінакіслотным саставам, парадкам чаргавання амінакіслотных астаткаў у поліпептыдных ланцугах, іх даўжынёй і размеркаваннем у прасторы. Адрозніваюць 4 парадкі (узроўні) структуры бялкоў: першасную (лінейная паслядоўнасць амінакіслотных астаткаў у поліпептыдным ланцугу), другасную (прасторавая, найчасцей спіральная прасторавая канфігурацыя, якую прымае сам поліпептыдны ланцуг), трацічную (трохмерная канфігурацыя, якія ўзнікае ў выніку складвання або закручвання структур другаснага парадку ў больш кампактную глабулярную форму) і чацвярцічную (злучэнне некалькіх частак з трацічнай структурай у адну больш буйную комплексную праз некавалентныя сувязі). Найб. устойлівая першасная структура бялкоў, іншыя лёгка разбураюцца пры павышэнні т-ры, рэзкім змяненні pH асяроддзя і інш. уздзеяннях (дэнатурацыя бялкоў), што вядзе да страты асн. біял. уласцівасцяў. Фарміраванне прасторавай канфігурацыі малекул бялку вызначаецца наяўнасцю ў поліпептыдных ланцугах вадародных, дысульфідных, эфірных і салявых сувязяў, сіл Ван дэр Ваальса і інш. Уласцівасці бялкоў залежаць ад іх хім. будовы і прасторавай арганізацыі (канфармацыі). Наяўнасць некалькіх узроўняў арганізацыі Б. забяспечвае іх вял. разнастайнасць у прыродзе (напр., у клетках бактэрыі Escherichia coli каля 3000 розных бялкоў, у арганізме чалавека больш за 50 000). Кожны від арганізмаў мае ўласцівы толькі яму набор бялкоў, па якім ён можа быць індэнтыфікаваны. Органы і тканкі жывых арганізмаў маюць розную колькасць бялкоў (у % да сырой вагі); 6,5—8,5 у крыві, 7—9 у мозгу, 16—18 у сэрцы, 18—23 у мышцах, 10—20 у насенні злакаў, 20—40 у насенні бабовых, 1—3 у лісці большасці раслін. Па харч. каштоўнасці бялкі падзяляюць на паўнацэнныя (маюць усе амінакіслоты, неабходныя жывёльнаму арганізму для сінтэзу бялкоў сваіх тканак) і непаўнацэнныя (у складзе малекул няма некаторых амінакіслот). Сутачная патрэба дарослага чалавека ў бялках 100—120 г. Арганізм расходуе ўласныя бялкі, калі ў ежы іх менш за норму. Многія прыродныя бялкі і бялковыя ўтварэнні выкарыстоўваюць у прам-сці (напр., для вырабу скуры, шэрсці, натуральнага шоўку, казеіну, пластмасаў і інш.), медыцыне і ветэрынарыі (як лек. сродкі і біястымулятары, напр., інсулін пры цукр. дыябеце, сываратачны альбумін як заменнік крыві, гама-глабулін для прафілактыкі інфекц. захворванняў, бялкі-ферменты для лячэння парушэнняў абмену рэчываў, гідралізатары бялкоў для штучнага жыўлення). Для атрымання пажыўных і кармавых бялкоў выкарыстоўваюць мікрабіял. сінтэз. Вядуцца даследаванні па штучным сінтэзе бялковых малекул (штучна сінтэзаваны фермент рыбануклеаза і інш.). Бялкі — адзін з гал. аб’ектаў даследаванняў біяхіміі, імуналогіі і інш. раздзелаў біял. навукі.

Літ.:

Бохински Р. Современные воззрения в биохимии: Пер. с англ. М., 1987;

Ленинджер А. Основы биохимии: Пер. с англ. Т. 1—3. М., 1985;

Гершкович А.А. От структуры к синтезу белка. Киев, 1989;

Овчинников Ю.А. Химия жизни: Избр. тр. М., 1990.

У.М.Рашэтнікаў.

т. 3, с. 397

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)