БІЯЛАГІ́ЧНЫЯ СІСТЭ́МЫ , сукупнасць узаемазвязаных і ўзаемадзейных жывых элементаў рознай складанасці (гены, клеткі, тканкі, органы, арганізмы, біяцэнозы, экасістэмы, біясфера). Валодаюць уласцівасцямі цэласнасці, адноснай устойлівасці, а таксама здольнасцю адаптацыі да зменлівых умоў навакольнага асяроддзя, развіцця, самаўзнаўлення і эвалюцыі. Біялагічныя сістэмы — адкрытыя сістэмы, для якіх умовай існавання служыць абмен энергіяй, рэчывам і інфармацыяй паміж часткамі сістэмы і з навакольным асяроддзем. Важнейшая праблема ў вывучэнні біялагічных сістэм — іх прасторавая і часавая арганізацыя, якая прадугледжвае ўключэнне ў сістэму некалькіх элементаў (больш за адзін), што адрозніваюцца пэўным наборам камплементарных паміж сабой прыкмет, на аснове чаго грунтуюцца ўзаемаадносіны паміж элементамі і забяспечваецца ўстойлівасць сістэмы. Тэорыя інфармацыі дазваляе ўвесці колькасныя ацэнкі ўзроўню арганізацыі, што забяспечваецца множнасцю, ступенню разнастайнасці элементаў і сувязяў паміж імі. На гэтай аснове адрозніваюць дэтэрмінаваныя, імаверныя і хаатычныя сістэмы. Біялагічныя сістэмы захоўваюць сваю спецыфічнасць у зменлівых умовах асяроддзя. Іх іерархічнасць і самарэгуляцыя забяспечваюцца шматузроўневым кіраваннем на аснове адваротных сувязяў. Гл. таксама Сістэмны падыход.

А.С.Леанцюк.

т. 3, с. 174

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДБО́РУ ПРА́ВІЛЫ ў фізіцы,

умовы, што вызначаюць магчымасць пераходу квантавых сістэм (ядраў, атамаў, малекул і інш.) з пачатковага стану ў канчатковы пры фіз. працэсах, звязаных з выпрамяненнем і паглынаннем энергіі.

Адбору правілы выражаюць выкананне пэўных захавання законаў у дадзеным працэсе і фармулююцца ў выглядзе суадносін паміж квантавымі лікамі. Аснова тэарэт. вызначэння адбору правілаў — патрабаванне адрознення ад нуля імавернасці пераходу паміж пач. і канчатковым станамі сістэмы, напр., імавернасць дыпольных пераходаў, звязаных з выпрамяненнем святла атамам, адрозніваецца ад нуля пры змене квантавых лікаў; ΔL = ±1, Δs = 0, ΔI = 0 або ±1 (за выключэннем, калі I = 0 у пач. і канчатковым станах), дзе I, L і s — адпаведна квантавыя лікі поўнага моманту імпульсу электроннай абалонкі, арбітальнага моманту і агульнага спінавага моманту электронаў. Пераходы, якія падпарадкоўваюцца адбору правілам дыпольнага выпрамянення, наз. дазволенымі, у адваротным выпадку — забароненымі (іх імавернасць у атамах вельмі малая). Адпаведныя адбору правілы існуюць у ядз. спектраскапіі і фізіцы элементарных часціц.

Л.М.Тамільчык.

т. 1, с. 97

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКТЫ́ЎНАЯ ЗО́НА ядзернага рэактара,

прастора ядзернага рэактара, дзе ў выніку ланцуговай ядзернай рэакцыі выдзяляецца энергія (пераважна ў выглядзе цяпла). Актыўная зона мае: рэчыва, якое дзеліцца (часцей за ўсё ў выглядзе блокаў ці стрыжняў); запавольнік, калі рэакцыя ідзе на павольных нейтронах; цепланосьбіт для адводу цяпла; прылады і прыстасаванні сістэм кіравання, кантролю і аховы рэактара. Як запавольнік выкарыстоўваюцца вада, цяжкая вада, графіт, берылій і інш., як цепланосьбіт — вада, вадзяная пара, цяжкая вада, арган. вадкасці, гелій, вуглякіслы газ, вадкія металы (пераважна натрый). Для памяншэння ўцечкі нейтронаў актыўная зона акружаецца адбівальнікам нейтронаў (з тых жа рэчываў, што і запавольнік). Форма актыўнай зоны цыліндрычная.

Літ.:

Петросьянц А.М. Ядерная энергетика. 2 изд. М., 1981;

Красин А.К., Красина Р.Ф. Мирное использование ядерной энергетики (физ. основы). Мн., 1982.

Р.М.Шахлевіч.

Актыўная зона ядзернага рэактара: 1 — стрыжань з паглынальнымі элементамі рэгулявання; 2 — стрыжань з паглынальнымі элементамі аварыйнай аховы; 3 — цеплавыдзяляльны элемент; 4 — запавольнік нейтронаў; 5 — цепланосьбіт; 6 — адбівальнік нейтронаў; 7 — цыркуляцыйны контур цепланосьбіта.

т. 1, с. 214

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АБ’ЕКТЫ́ЎНАЕ,

тое, што належыць самому аб’екту, існуе незалежна ад дзеючага суб’екта і яго свядомасці. Тэрмін аб’ектыўнае мае некалькі аспектаў. Анталагічны ўключае ўяўленне аб аб’ектыўным як існуючым па-за чалавекам і чалавецтвам і незалежна ад іх (напр., памеры і канфігурацыі рэчаў як іх аб’ектыўныя ўласцівасці). Гнасеалагічны звязаны з уяўленнем аб аб’ектыўным як уласцівасці ведаў, упэўненасці ў тым, што яны адлюстроўваюць аб’ект, які даследуецца, у сваіх асабістых характарыстыках (напр., найб. фундаментальныя характарыстыкі сістэм нежывой прыроды — скорасць святла, гравітацыйная пастаянная, у біял. відавой папуляцыі — суадносіны паміж асобінамі рознага полу). У аб’ектыўным ідэалізме аб’ектыўнае — гэта ідэі і паняцці, што існуюць незалежна ад суб’екта. У грамадскім жыцці пад аб’ектыўным разумеюць працэсы і фактары, якія не залежаць ад волі і жаданняў людзей. Аб’ектыўным з’яўляюцца сац. законы, хоць яны фарміруюцца праз механізм чалавечай дзейнасці. Аб’ектыўнае проціпастаўляецца суб’ектыўнаму і суб’ектыўна-асабоваму. Аднак такое проціпастаўленне не мае абсалютнага характару: тое, што ў адных адносінах з’яўляецца аб’ектыўным, у іншых можа быць суб’ектыўным.

У.К.Лукашэвіч.

т. 1, с. 20

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АБ’ЕКТЫ́ЎНАЯ РЭА́ЛЬНАСЦЬ,

сукупнасць незалежных ад чалавечай свядомасці аб’ектаў, сувязяў, адносін, узаемадзеянняў, працэсаў, аб’яднаных у нежывыя, жывыя і сац.-арганізаваныя сістэмы. Жывыя сістэмы ўключаюць усю сукупнасць арганізмаў, здольных да самаўзнаўлення на аснове генетычнай інфармацыі. Сац.-арганізаваныя сістэмы — гэта сукупнасць індывідуумаў і іх згуртаванняў, якія падтрымліваюць сваё існаванне праз пераўтварэнне навакольнай рэчаіснасці. У структуру такіх сістэм уваходзяць таксама створаныя чалавекам тэхн. сістэмы, з дапамогай якіх ён больш паспяхова асвойвае рэчаіснасць. Унутраная падпарадкаванасць і сістэмная арганізацыя, якімі валодае аб’ектыўная рэальнасць, законы яе эвалюцыі складаюць найважнейшы элемент даследаванняў. З улікам характару аспектаў аб’ектыўнай рэальнасці, якія даследуе тая ці інш. дысцыпліна, вылучаюць фіз. рэальнасць, біял. рэальнасць і г.д. і адпаведна карціну фіз. рэальнасці, карціну біял. рэальнасці і г.д. як найбольш буйныя блокі ведаў. Агульныя характарыстыкі аб’ектыўнай рэальнасці адлюстроўвае агульнанавук. карціна сусвету.

Літ.:

Идеалы и нормы научного исследования. Мн., 1981;

Пригожин И., Сонгере И. Порядок из хаоса: Новый диалог человека с природой. М., 1986;

Проблемы познания социальной реальности. М., 1990.

У.К.Лукашэвіч.

т. 1, с. 20

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЯЛІ́КАЯ СІСТЭ́МА ў кібернетыцы, сукупнасць размеркаваных у прасторы ўзаемазвязаных элементаў (кіроўных падсістэм), аб’яднаных агульнай мэтай функцыянавання. Для вялікай сістэмы характэрны: іерархічны прынцып пабудовы (вышэйшая ступень кіруе некалькімі падраздзяленнямі ніжэйшай ступені, кожнаму з якіх падначалены падраздзяленні больш нізкай ступені), удзел у сістэме людзей, машын і навакольнага асяроддзя; наяўнасць матэрыяльных, энергет. і інфарм. сувязей паміж часткамі сістэмы і інш. Вялікія сістэмы інтэнсіўна развіваюцца ў галіне адм. кіравання, абслугоўвання, у многіх галінах нар. гаспадаркі і абароны, дзе патрабуецца ўлік вял. колькасці фактараў і перапрацоўка вял. аб’ёмаў інфармацыі.

Кіраванне вялікай сістэмы заснавана на ўзаемадзеянні людзей, сродкаў вылічальнай тэхнікі, збору, перадачы, выяўлення і захавання інфармацыі.

Персанал, які кіруе, у сукупнасці з тэхн. сродкамі ўтварае аўтаматызаваную сістэму кіравання. Прыклады вялікіх сістэм: энергасістэма, якая мае прыродныя крыніцы энергіі (рэкі, радовішчы хім. або ядзернага паліва, ветравую або сонечную энергію), электрастанцыі, лініі перадачы энергіі, персанал, карыстальнікаў і інш.; вытв. прадпрыемства, якое мае крыніцы забеспячэння сыравінай і энергіяй, тэхнал. абсталяванне, фінансы, збыт прадукцыі, улік і справаздачнасць і інш. Гл. таксама Аўтаматызацыя вытворчасці.

М.П.Савік.

т. 4, с. 382

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

«ДЖЭ́МІНІ», «Джэмінай» (Gemini),

назва серыі амер. двухмесных касм. караблёў (КК) для палётаў на каляземнай арбіце; праграма іх распрацоўкі і палётаў.

КК «Дж.» складаецца з герметычнага спускальнага апарата, дзе размяшчаюцца 2 касманаўты, і негерметычнага адсека з абсталяваннем і тармазнымі рухавікамі. Мае апаратуру і ракетны рухавік для збліжэння з інш. лятальнымі апаратамі на арбіце. Сістэма жыццезабеспячэння разлічана на 14 сут, пасадка прадугледжана толькі на ваду. Усяго па праграме «Дж.» запушчана 12 КК (1964—66; 10 з іх з 2 касманаўтамі на борце). У час палётаў праводзілася манеўраванне і збліжэнне КК («Дж.-6» і «Дж.-7»), стыкоўка з ракетай «Аджэна», выхад касманаўтаў у касм. прастору (Э.Уайт, Ю.Сернан, М.Калінз, Р.Гордан, Э.Олдрын), выпрабаванне сістэм карабля, фатаграфаванне Зямлі, неба і інш. Праграма «Дж.» была падрыхтоўчым этапам праграмы «Апалон».

Схема спускальнага апарата касмічнага карабля «Джэміні»: 1 — герметычная капсула; 2 — крэслы касманаўтаў; 3 — пульт і прыладная дошка; 4 — адсек сістэмы арыентацыі; 5 — кантэйнер з парашутамі; 6 — радыёлакатар для збліжэння на арбіце; 7 — бартавая апаратура і абсталяванне; 8 — цеплаахоўны экран.

т. 6, с. 97

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДЗЯРЖА́ЎНЫ АРХІ́Ў ГО́МЕЛЬСКАЙ ВО́БЛАСЦІ.

Засн. ў Гомелі ў 1923 як губ. архівасховішча, з 1927 Гомельскі акр. дзярж. архіў, з 1930 Гомельскае аддзяленне Цэнтр. архіўнага ўпраўлення БССР, з 1933 Паўд.-Бел. аддзяленне Цэнтр. архіўнага ўпраўлення БССР, з 1936 Гомельскае аддзяленне Цэнтр. дзярж. архіваў БССР, з 1938 Гомельскі абл. архіў, з 1941 Дзярж. архіў Гомельскай вобл. На 1.1.1997 у архіве 2766 фондаў, 450 тыс. спраў з 1917. Зберагае дакументы губ., пав., валасных, акруговых, абл., гар., раённых і сельскіх арг-цый, устаноў і прадпрыемстваў, якія дзейнічалі і дзейнічаюць на тэр. вобласці. Сярод іх фонды органаў улады і кіравання, устаноў фінансавання, планавання і кантролю, аховы здароўя, культуры і інш., матэрыялы пра эканам. стан вобласці, развіццё сельскай гаспадаркі, адм.-тэр. падзел. Дакументы на бел., рус., польск. і яўр. мовах.

Аддзелы: камплектавання, ведамасных архіваў і справаводства; уліку і забеспячэння захаванасці дакументаў; інфарм.-пошукавых сістэм і аўтаматызаваных архіўных тэхналогій; інфармацыі, публікацыі і навук. выкарыстання дакументаў.

А.Дз.Карасёў.

т. 6, с. 151

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗВЫШГАЛА́КТЫКА, звышскопішча галактык,

гіганцкая сукупнасць зорных сістэм. Складаецца з асобных галактык, іх груп і скопішчаў. Памеры 50—150 Мпс, маса 10​15—10​16 мас Сонца. Форма пляскатая (напр., Лакальная З.) або моцна выцягнутая, накшталт ланцужка (напр., З. Персея). Узніклі з прычыны адыябатычных узбурэнняў шчыльнасці рэчыва на пачатковай стадыі расшырэння гарачай Метагалактыкі. Некаторыя З. расшыраюцца, іншыя сціскаюцца. Выяўлена іх каля 50.

Наша Галактыка, Магеланавы Воблакі, галактыкі ў Трыкутніку, Андрамедзе з яе спадарожнікамі і амаль усе галактыкі, бачныя як аб’екты да 13-й зорнай велічыні, уваходзяць у Лакальную З. Яе цэнтр. згушчэнне — буйное скопішча галактык у сузор’і Дзевы (да 500 вял. галактык). Наша Галактыка знаходзіцца бліжэй да перыферыі З., таму галактыкі, што яе акружаюць, утвараюць на нябеснай сферы шырокі пояс («Млечны Шлях галактык»), амаль перпендыкулярны да зорнага Млечнага Шляху. У сузор’ях Льва і Геркулеса знаходзяцца іншыя з больш блізкіх З.

Літ.:

>Зельдович Я.Б., Новиков И.Д. Строение и эволюция Вселенной. М., 1975;

Агекян Т.А Звезды, галактики, Метагалактика. 3 изд. М., 1981.

Н.А.Ушакова.

т. 7, с. 41

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗВЫШПРАВАДНІКІ́,

рэчывы, у якіх пры ахаладжэнні ніжэй за крытычную тэмпературу электрычнае супраціўленне падае практычна да нуля — мае месца звышправоднасць.

Ад інш. электраправодных матэрыялаў З. адрозніваюцца поўнай адсутнасцю супраціўлення пастаяннаму эл. току, т.зв. захопам магн. патоку ўнуры кольца з З. і эфектам Майснера (магн. поле не пранікае ў тоўшчу З. пры напружанасці поля, меншай за крытычную, — сілавыя лініі поля агінаюць З.; на гэтым эфекце заснавана дзеянне звышправодных магн. экранаў). Да З. адносяцца многія металы (свінец Pb, алюміній Al, талій Ti, ніобій Nb і інш.), метал сплавы (напр., свінец—золата Pb—Au, ніобій—тытан—цырконій Nb—Ti—Zr), інтэрметалічныя злучэнні, карбіды, нітрыды, некаторыя паўправаднікі і палімеры. З. выкарыстоўваюцца для стварэння звышправодных магнітаў, балометраў, магутных электрагенератараў і рухавікоў, сілавых кабеляў і трансфарматараў вял. магутнасці для сістэм цэнтралізаванага размеркавання электраэнергіі, звышадчувальных дэтэктараў выпрамяненняў, у высакаскораснай лічбавай электроніцы і інш. Гл. таксама Высокатэмпературная звышправоднасць, Джозефсана эфект.

Літ.:

Физико-химия сверхпроводников. М., 1976;

Шмидт В.В. Введение в физику сверхпроводников. М., 1982.

Я.М.Галалобаў.

т. 7, с. 41

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)