АЛЮМІ́НІЙ (лац. Aluminium),

Al, хімічны элемент III групы перыядычнай сістэмы Мендзялеева, ат. н. 13, ат. м. 26,98. Прыродны алюміній складаецца з аднаго стабільнага ізатопа ​27Al (100%). У літасферы алюміній складае 8,8% па масе (першае месца сярод металаў). Атрыманы ў 1825 дацкім вучоным Х.К.Эрстэдам. Галоўныя носьбіты алюмінію — алюмасілікаты, асн. крыніцы атрымання — баксіты, алуніты, нефелін-апатытавыя руды.

Лёгкі серабрыста-белы метал, добра праводзіць цеплыню і электрычнасць, пластычны, шчыльн. 2,7·10 кг/м³, tпл 660 °C. Хім. актыўны: на паверхні стварае ахоўную аксідную плёнку, аднаўляе металы і неметалы з іх аксідаў, узаемадзейнічае з галагенамі, пры высокіх т-рах з азотам, вугляродам і серай. На алюміній не дзейнічаюць разбаўленыя і моцныя азотная, саляная і серная к-ты. Алюміній з шчолачамі ўтварае алюмінаты. Прамысловы спосаб атрымання заснаваны на электролізе раствору гліназёму (Al2O3) у расплаўленым крыяліце (Na3AlF6) пры t 950 °C. Выкарыстоўваецца ў авіяцыі, буд-ве (канструкцыйны матэрыял), электратэхніцы, металургіі (гл. Алюмінатэрмія), хім. і харч. прам-сці (тара, упакоўкі), вытв-сці выбуховых рэчываў (аманал, алюматол). Як мікраэлемент уваходзіць у склад тканак жывых арганізмаў і раслін; лішак алюмінію шкодны, акумулюецца ў печані, падстраўнікавай і шчытападобнай залозах.

т. 1, с. 292

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВУГЛЯВО́ДНЫ АБМЕ́Н,

сукупнасць хім. працэсаў дэградацыі (катабалізму) і біясінтэзу (анабалізму) вугляводаў у арганізме. На 1-й стадыі катабалізму пры ўдзеле стрававальных ферментаў складаныя поліцукрыды і алігацукрыды распадаюцца да монацукрыдаў (гексоз і пентоз), якія на 2-й стадыі расшчапляюцца да аднаго і таго ж трохвугляроднага прамежкавага прадукту — пірувату (гліколіз), а потым у аэробных умовах да двухвугляроднай формы — ацэтыльнай групы ацэтылкаферменту A (гл. Трыкарбонавых кіслот цыкл). У анаэробных умовах піруват у большай частцы клетак жывёльных і раслінных тканак аднаўляецца да лактату, а ў клетках дражджэй у ходзе спіртавога браджэння ператвараецца ў этылавы спірт і вуглякіслы газ. На 3-й стадыі ацэтыльная група ацэтылкаферменту A уступае ў цыкл лімоннай к-ты — агульны канчатковы шлях, на якім усе віды малекул вугляводаў акісляюцца да вуглякіслага газу. Дэградацыя вугляводаў у арганізме суправаджаецца вызваленнем значнай энергіі, якая расходуецца на розныя працэсы жыццядзейнасці. Біясінтэз вугляводаў у жывых клетках можа адбывацца шляхам глюканеагенезу (сінтэз глюкозы ў клетках печані, які ўключае 9 з 11 ферментацыйных рэакцый, што ўдзельнічаюць у яе раскладзе) і шляхам ператварэння простых вугляводаў у больш складаныя аліга- і поліцукрыды.

С.А.Вусанаў.

т. 4, с. 285

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗУ́БЫ,

косцепадобныя органы большасці пазваночных жывёл і чалавека ў ротавай поласці на альвеалярных адростках верхняй і ніжняй сківіцы (у некат. рыб у глотцы). Асн. функцыі: захопліванне, трыманне і перажоўванне яды; у некат. жывёл служаць аховай ад ворагаў, у чалавека прымаюць удзел у голасаўтварэнні.

З. ўтвараюцца з эпітэліяльнай і злучальнай тканак. Складаюцца з відазмененай косці (эмалі, дэнціну, цэменту). Маюць каронку (выступае над сківіцай, укрыта эмаллю), корань (размешчаны ў сківіцы, укрыты цэментам), шыйку (злучальная тканка). Унутры З. ёсць поласць, запоўненая зубной мякаццю (пульпай), у якой праходзяць крывяносныя сасуды і нервы; крывёй забяспечваюцца верхне- і ніжнесківічнымі артэрыямі, інервуюцца трайнічным нервам. У залежнасці ад формы каронкі і прызначэння адрозніваюць разцы, іклы, карэнныя З., ад колькасці каранёў — 1-, 2-, 3-карэнныя. Колькасць З. у драпежных жывёл да 44, у некат. сумчатых — да 58, у дэльфінаў — 240. У млекакормячых і чалавека 2 змены З.: малочныя (20, прарэзваюцца з 6 да 30 месяцаў) і сталыя (32, з 6 да 16 гадоў), З. мудрасці — да 30 гадоў. Найб. распаўсюджаныя пашкоджанні З.: зубны камень, карыес зубоў, пульпіт, перыядантыт і інш.

А.С.Леанцюк.

т. 7, с. 118

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

дэгенера́цыя

(лац. degeneratio)

1) пагаршэнне біялагічных і псіхічных адзнак арганізма; выраджэнне;

2) разбурэнне тканак і органаў жывёльных арганізмаў у працэсе антагенезу (напр. знікненне хваста пры ператварэнні апалоніка ў жабу) або шляхам рэдукцыі 2;

3) мед. змены ў клетках і тканках у сувязі з парушэннем абмену рэчываў (гл. дыстрафія).

Слоўнік іншамоўных слоў (А. Булыка, 1999, правапіс да 2008 г.)

фікса́цыя

(фр. fixation, ад лац. fixus = цвёрды, нерухомы, моцны)

1) замацаванне чаго-н. у пэўным становішчы;

2) замацаванне ў пісьмовым выглядзе звестак, думак;

3) засяроджанне на чым-н. увагі;

4) апрацоўка фіксатарам 2 клетак, тканак, органаў для кансервацыі іх структуры;

5) апрацоўка фіксажам праяўленых адбіткаў на негатыве або пазітыве.

Слоўнік іншамоўных слоў (А. Булыка, 1999, правапіс да 2008 г.)

хіме́ра

(лац. chimaera, ад гр. Chimaira)

1) старажытнагрэчаская міфічная пачвара з ільвінай галавой, казліным тулавам і змяіным хвастом;

2) перан. мара, якая не можа здзейсніцца; неажыццявімая фантазія;

3) марская рыба сям. хімеравых з цыліндрычным тулавам, доўгім хвастом і вялікімі плаўнікамі;

4) раслінны арганізм, які складаецца з генетычна неаднародных тканак.

Слоўнік іншамоўных слоў (А. Булыка, 1999, правапіс да 2008 г.)

ВУГЛЯРО́Д (лац. Carboneum),

C, хімічны элемент IV групы перыяд. сістэмы, ат. н. 6, ат. м. 12,011. Складаецца з 2 стабільных ізатопаў ​12C (98,892%) і ​13C (1,108%). Ізатопам ​12C карыстаюцца для вызначэння атамнай адзінкі масы. У верхніх слаях атмасферы ўтвараецца радыеактыўны ізатоп ​14C. У зямной кары ў выглядзе мінералаў і гаручых выкапняў знаходзіцца 2,3·10% вугляроду па масе, у атмасферы ў выглядзе вугляроду дыаксіду — 1,2·10​−2%. Вельмі шмат вугляроду ў космасе; на Сонцы па распаўсюджанасці займае 4-е месца пасля вадароду, гелію, кіслароду. Злучэнні вугляроду — асн. састаўная частка тканак раслін і жывёл (гл. Біягены).

Існуюць 2 крышт. мадыфікацыі вугляроду (алмаз, графіт, 3-я — карбін — атрымана штучна) і аморфны (кокс, сажа, драўняны вугаль). Пры звычайных т-рах хімічна інертны, пры высокіх — рэагуе з многімі элементамі: з металамі і некаторымі неметаламі (напр., бор, крэмній) утварае карбіды. Аморфны вуглярод хімічна больш актыўны (моцны аднаўляльнік). Атамы вугляроду здольныя злучацца адзін з адным і ўтвараюць вял. колькасць злучэнняў, якія вывучае арганічная хімія.

Выкарыстоўваюць у вытв-сці алмазных інструментаў (гл. таксама Алмазная прамысловасць), вогнетрывалых матэрыялаў, эл.-тэхн. вырабаў, у ядз. тэхніцы, гумавай, паліграф., лакафарбавай прам-сці, металургіі.

К.Л.Майсяйчук.

т. 4, с. 286

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЕЙРАЭНДАКРЫНАЛО́ГІЯ (ад нейра... + эндакрыналогія),

раздзел эндакрыналогіі, які вывучае марфал., фізіял. і біяхім. асновы эндакрыннай функцыі нерв. сістэмы і інтэграцыі нерв. і эндакрынных механізмаў рэгуляцыі функцый арганізма. Цесна звязана з бія- і гістахіміяй, генетыкай, малекулярнай біялогіяй, нейрафізіялогіяй, клінічнай медыцынай, фармакалогіяй.

Зараджэнне Н. звязана з працамі Э.Шарэра (увёў тэрмін «нейрасакрэцыя», 1928) і Б.Шарэра (выявіў сакрэцыю ў клетак гіпаталамуса, 1928). Як самаст. кірунак сфарміравалася ў сярэдзіне 20 ст. з вызначэннем гарманальнай рэгуляцыі гіпаталамусам дзейнасці гіпофіза (Р.Гіймэн, Э.В.Шалі, англ. вучоны Дж.Харыс, Шарэры і інш.). Уклад у развіццё Н. зрабілі таксама Р.Леві-Мантальчыні, ням. вучоны В.Баргман, англ. вучоны Э.Г.Э.Пірс, сав. вучоныя І.Г.Акмаеў, В.М.Бабічаў, А.А.Вайткевіч, С.М.Лейтэс, А.В.Рэзнікаў, Д.Р.Шэфер і інш. Вызначаны здольнасць да нейрасакрэцыі ўсіх аддзелаў нерв. сістэмы, інш. тканак, хім. структура, механізмы дзеяння і рэгуляцыя сакрэцыі шэрагу нейрагармонаў, патагенез многіх нерв. і эндакрынных хвароб.

На Беларусі праблемы Н. распрацоўваюцца ў Ін-тах фізіялогіі і біяхіміі Нац. АН Беларусі, НДІ неўралогіі, нейрахірургіі і фізіятэрапіі, Н.-д. клінічным ін-це радыяцыйнай медыцыны і эндакрыналогіі, Бел. ін-це ўдасканалення ўрачоў, Мінскім мед. ін-це. і інш (Ф.В.Аляшкевіч, Л.С.Гіткіна, М.І.Грашчанкаў, В.М.Гурын, Б.У.Дрывоцінаў, У.М.Калюноў, І.Б.Ліўшыц, А.Ф.Смеяновіч, А.А.Холадава, Г.Г.Шанько, А.Г.Мрочак і інш.).

Літ.:

Нейроэндокринология. Ярославль, 1999.

А.А.Холадава.

т. 11, с. 274

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АБМЕ́Н РЭ́ЧЫВАЎ, метабалізм,

сукупнасць хім. ператварэнняў рэчываў у жывых арганізмах, якія забяспечваюць іх развіццё, жыццядзейнасць, самаўзнаўленне, сувязь з навакольным асяроддзем і адаптацыю да змен у ім. Аснову абмену рэчываў складаюць непарыўна звязаныя і ўзаемаабумоўленыя працэсы анабалізму, катабалізму і абмену энергіі. У сукупнасці яны забяспечваюць структурную і функцыян. цэласнасць арганізмаў, ляжаць у аснове іх гамеастазу. У планетарным маштабе абмен рэчываў складае важную частку кругавароту рэчываў у прыродзе. Для кожнага віду жывых арганізмаў характэрны свой, генетычна замацаваны ўзровень абмену рэчываў, які залежыць ад іх спадчынных уласцівасцяў, месца ў эвалюцыйным радзе, узросту, полу, умоў існавання і інш. фактараў (напр., абмен рэчываў ніжэйшы ў раслін і халаднакроўных жывёл, вышэйшы ў цеплакроўных, слабы ў час спячкі, анабіёзу, высокі ў перыяд размнажэння і г.д.). Пры вял. і разнастайным асартыменце арган. рэчываў, якія ўцягваюцца ў абмен, агульная яго схема ў розных арганізмаў падобная, вызначаецца ўпарадкаванасцю і падабенствам паслядоўнасці біяхім. ператварэнняў, што адбываюцца пры абавязковым удзеле ферментаў. Дзякуючы абмену рэчываў з пажыўных рэчываў утвараюцца характэрныя для дадзенага арганізма злучэнні, якія выкарыстоўваюцца як буд. ці энергет. матэрыял, пастаянна і няспынна абнаўляюцца органы і тканкі без прынцыповай змены іх хім. саставу. Асн. тыпы злучэнняў, якія ўдзельнічаюць у абмене рэчываў у арганізме, — бялкі, тлушчы, вугляводы, мінеральныя рэчывы. Іх навук. даследаванне вылучаецца ў самаст. раздзелы біяхіміі.

Ператварэнні рэчываў ад моманту іх паступлення ў арганізм да ўтварэння канчатковых прадуктаў распаду складаюць сутнасць т.зв. прамежкавага абмену рэчываў. Асн. яго этапы: ператраўленне і ўсмоктванне пажыўных рэчываў у страўнікава-кішачным тракце; дастаўка атрыманых рэчываў да розных органаў і тканак; іх перабудова, раскладанне і выкарыстанне для біясінтэзу спецыфічных рэчываў, клетак і тканак; раскладанне такіх рэчываў з утварэннем прамежкавых злучэнняў і канчатковых прадуктаў абмену; выдаленне апошніх з арганізма. Цэнтр. месца ў абмене рэчываў належыць цыклу трыкарбонавых кіслот, у якім перакрыжоўваюцца шляхі бялковага, вугляводнага, тлушчавага абмену (гл. схему). Найважн. прамежкавы прадукт абмену рэчываў — ацэтылкаэнзім A, які ўдзельнічае ва ўсіх працэсах анабалізму і катабалізму і аб’ядноўвае іх; асн. канчатковыя прадукты — H2O, CO3, NH3, мачавіна і інш. У рэгуляванні працэсаў абмену рэчываў гал. месца займаюць змены актыўнасці і інтэнсіўнасці сінтэзу клетак, абмен можа самарэгулявацца па прынцыпе адваротнай сувязі. Вял. значэнне ў рэгуляванні абмену рэчываў маюць біял. мембраны. У высокаарганізаваных жывёл рэгулюецца і каардынуецца нейрагумаральнай сістэмай пры ўдзеле біял. актыўных рэчываў (вітаміны, гармоны, медыятары і інш.). Разбалансаванне абмену рэчываў з’яўляецца прычынай або вынікам узнікнення разнастайных хвароб, фіксацыя змен у ім — важны дыягнастычны сродак. Гл. таксама Бялковы абмен, Вугляводны абмен, Тлушчавы абмен, Мінеральны абмен.

Літ.:

Ленинджер А. Основы биохимии: Пер. с англ. Т. 1—3. М., 1985;

Страйер Л. Биохимия: Пер. с англ. Т. 1—3. М., 1984—85.

Я.В.Малашэвіч.

Схема абмену рэчываў.

т. 1, с. 28

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАБАЛІ́ЗМ (ад грэч. anabolē уздым),

асіміляцыя, сукупнасць хім. працэсаў у жывым арганізме, якія забяспечваюць біял. сінтэз патрэбных для жыцця складаных рэчываў (бялкоў, поліцукрыдаў, тлушчаў, нуклеінавых кіслот і інш.) з больш простых. Накіраваны на ўтварэнне і абнаўленне структурных частак клетак і тканак. Непарыўна звязаны з катабалізмам (процілеглы працэс) і ўтварае з ім хім. аснову прамежкавага абмену рэчываў і абмену энергіі (забяспечвае яе назапашванне) у арганізме. Аўтатрофныя арганізмы (зялёныя расліны і некаторыя грыбы) здольныя ажыццяўляць першасны сінтэз арган. злучэнняў з CO2 з выкарыстаннем вонкавых крыніц энергіі (сонечнага святла, акіслення неарган. рэчываў), гетэратрофныя — толькі за кошт энергіі, якая вызваляецца ў працэсах катабалізму. Колькасць зыходных кампанентаў для біясінтэзу абмежаваная (глюкоза, рыбоза, амінакіслоты, піравінаградная кіслата, гліцэрына, ацэтылкаэнзім анабалізму і інш.). Як правіла, анабалізм забяспечваецца спецыфічным наборам ферментаў і ўключае шэраг аднаўленчых этапаў. У працэсе анабалізму кожная клетка сінтэзуе характэрныя для яе бялкі, вугляводы, тлушчы і інш. злучэнні (напр., мышачныя клеткі сінтэзуюць уласны глікаген і не скарыстоўваюць глікаген печані). У высокаарганізаваных арганізмаў у рэгуляцыі анабалізму на ўзроўні клетачнага абмену рэчываў акрамя ферментаў удзельнічаюць гармоны і інш. біял. актыўныя рэчывы, нерв. сістэма (гл. Нейрагумаральная рэгуляцыя). Многія прыродныя і сінтэтычныя рэчывы (анаболікі) здольныя павышаць узровень анабалізму, іх выкарыстоўваюць для штучнага нарошчвання мышачнай масы цела ў спорце (праблема допінг-кантролю), таксама як лек. сродкі ў тэрапіі хвароб абмену рэчываў.

т. 1, с. 331

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)