Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АВА́Л

(франц. ovale ад лац. ovum яйцо),

замкнёная выпуклая плоская крывая, (напр., акружнасць, эліпс). Уласцівасці: кожны дастаткова гладкі авал мае не менш як 4 пункты максімуму і мінімуму крывізны; калі адлегласць паміж любымі 2 паралельнымі, датычнымі да авала, пастаянная для ўсіх напрамкаў (авал пастаяннай шырыні h), то даўжыня роўная πh. Авал пастаяннай шырыні атрымліваюць, калі з вяршыні роўнастаронняга трохвугольніка са стараной а апісваюць 6 акружнасцей (3 адвольным радыусам r, 3 радыусам, роўным R = a + r). У алг. геаметрыі авалам наз. ўсякія замкнёныя (не абавязкова выпуклыя) галіны алг. крывых, што не маюць пунктаў самаперасячэння.

т. 1, с. 58

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАЛІТЫ́ЧНАЯ ГЕАМЕ́ТРЫЯ,

раздзел геаметрыі, у якім уласцівасці геаметрычных аб’ектаў (пунктаў, ліній, паверхняў) даследуюцца сродкамі алгебры на падставе метаду каардынат (праз вывучэнне ўласцівасцяў ураўненняў, графікамі якіх гэтыя аб’екты з’яўляюцца).

Узнікненне метаду каардынат звязана з развіццём у 17 ст. астраноміі, механікі, тэхнікі. Асновы аналітычнай геаметрыі заклалі Р.Дэкарт (1637) і П.Ферма (1629); далейшае развіццё звязана з працамі Г.Лейбніца, І.Ньютана, Л.Эйлера, Ж.Лагранжа, Г.Монжа, С.Лакруа і інш. Асн. задача аналітычнай геаметрыі на плоскасці — даследаванне ліній 1-га (прамыя) і 2-га (эліпс, гіпербала, парабала) парадку, якія ў дэкартавых каардынатах вызначаюцца алг. ўраўненнямі адпаведна 1-й і 2-й ступені. Аналітычная геаметрыя ў прасторы даследуе паверхні 1-га (плоскасці) і 2-га (эліпсоід, гіпербалоід, парабалоід, конус, цыліндр) парадку, якія вызначаюцца алг. ўраўненнямі адносна дэкартавых каардынат адпаведна 1-й і 2-й ступені.

Метад даследавання і класіфікацый ліній і паверхняў прадугледжвае адшуканне такой прамавугольнай сістэмы каардынат, у якой адпаведнае ўраўненне набывае найб. просты выгляд. Метадамі аналітычнай геаметрыі карыстаюцца ў матэматыцы, фізіцы, механіцы, тэхніцы і інш. На Беларусі значны ўклад у развіццё аналітычнай геаметрыі зрабілі У.К.Дыдырка («Цыркулярныя крывыя 3-га парадку» — 1-я на Беларусі матэм. манаграфія, 1928) і І.К.Богаяўленскі («Аналітычная геаметрыя» — 1-ы беларускамоўны падручнік па вышэйшай матэматыцы, 1932).

Літ.:

Тышкевич Р.И., Феденко А.С. Линейная алгебра и аналитическая геометрия. 2 изд. Мн., 1976.

А.А.Гусак.

т. 1, с. 334

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)