ЛА́НДЭ МНО́ЖНІК,

каэфіцыент у формуле для вызначэння расшчаплення ўзроўняў энергіі ў магн. полі (гл. Зеемана з’ява). Вызначае маштаб расшчаплення ў адзінках магнетона Бора, а таксама адносную велічыню гірамагнітных адносін. Уведзены ў 1921 ням. фізікам А.Ландэ. Значэнні Л.м. залежаць ад арбітальных і спінавых момантаў асобных электронаў, напр., для чыста арбітальнага моманту Л.м. роўны 1, для чыста спінавага — 2.

т. 9, с. 123

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАГАРЫФМІ́ЧНАЯ ПАПЕ́РА,

спецыяльна разграфлёная папера, якая выкарыстоўваецца для адшукання аналітычнай формы эмпірычных залежнасцей.

На кожнай з восей дэкартавай сістэмы каардынат адкладваюцца значэнні лагарыфмаў лікаў x = mlgu i y = mlgv, дзе m — пастаянны множнік, і праз адзначаныя пункты праводзяцца вертыкальныя і гарызантальныя паралельныя прамыя. Калі адно з сем’яў прамых правесці праз роўныя прамежкі, атрымаецца паўлагарыфмічная папера. Графікі ступенных функцый віду y = xn набываюць на Л.п. выгляд прамых ліній пры любых п.

т. 9, с. 87

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДНАРО́ДНЫЯ КААРДЫНА́ТЫ пункта, прамой і г.д., каардынаты з уласцівасцю, што аб’ект, які яны вызначаюць, не мяняецца, калі ўсе каардынаты памножыць на адвольны лік.

Напр., аднародныя каардынаты пункта M на плоскасці могуць з’яўляцца лікі x, y, z, звязаныя суадносінамі x : y : z = x : y : 1 , дзе x і y — дэкартавы каардынаты пункта M. Лікі x′, y′, z′ будуць аднароднымі каардынатамі таго ж пункта M у выпадку, калі знойдзецца множнік λ, што x′=λx, y′=λy, z′=λz.

Увядзенне аднародных каардынат дазваляе дадаць да пунктаў эўклідавай плоскасці пункты з трэцяй аднароднай каардынатай, роўнай нулю (т.зв.бесканечна аддаленыя пункты), што істотна для праектыўнай геаметрыі.

т. 1, с. 123

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)