ВЫ́МУШАНАЕ ВЫПРАМЯНЕ́ННЕ,

вылучэнне электрамагнітных хваль квантавымі сістэмамі (напр., атамамі) пад уздзеяннем знешняга (вымушанага) выпрамянення і тоеснымі з ім частатой, фазай, палярызацыяй і напрамкам распаўсюджвання. Паняцце вымушанага выпрамянення ўведзена з агульных тэрмадынамічных меркаванняў А.Эйнштэйнам (1917) для сістэмы многіх часціц. Вымушанае выпрамяненне актыўнага асяроддзя выкарыстоўваецца для ўзмацнення і генерацыі эл.-магн. хваль (гл. Квантавы ўзмацняльнік, Квантавы генератар).

Поўная магутнасць вымушанага выпрамянення пры ўзаемадзеянні актыўнага асяроддзя са знешнім эл.-магн выпрамяненнем выражаецца формулай P = ε ωmn (Nm Nn) , дзе ε = (Em En) — энергія выпрамененага (паглынутага) фатона; Em і En — энергія электрона на больш высокім і больш нізкім узроўнях; ωmn — імавернасць выпрамянення (паглынання); Nm і Nn — заселенасць больш высокага і больш нізкага ўзроўняў. Актыўнае асяроддзе мае інверсную заселенасць узроўняў Nm>Nn і P>0; у раўнаважных сістэмах Nm<Nn, і таму сістэма паглынае знешняе выпрамяненне (P<0).

Л.М.Арлоў.

т. 4, с. 314

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДСТУПЛЕ́ННЕ, адыход,

дзеянні войскаў з мэтай выхаду з-пад удараў праціўніка і заняцця больш выгаднага становішча для далейшых баявых дзеянняў. Можа быць наўмыснае і вымушанае (калі немагчыма наяўнымі сіламі ўтрымаць заняты раён і ствараецца рэальная пагроза акружэння).

т. 1, с. 139

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКТЫ́ЎНАЕ АСЯРО́ДДЗЕ,

1) у квантавай электроніцы — рэчыва, у якога высокія энергетычныя ўзроўні часцінак заселены больш, чым нізкія (т.зв. інверсная заселенасць). Вымушанае выпрамяненне актыўнага асяроддзя выкарыстоўваецца для ўзмацнення і генерацыі эл.-магн. хваляў (гл. Квантавы ўзмацняльнік, Квантавы генератар).

2) У оптыцы — рэчыва, якому ўласцівая натуральная аптычная актыўнасць.

т. 1, с. 213

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПТЫ́ЧНЫ КВА́НТАВЫ ЎЗМАЦНЯ́ЛЬНІК,

узмацняльнік электрамагнітных хваляў аптычнага дыяпазону спектра, дзеянне якога заснавана на вымушаным выпрамяненні ўзбуджаных атамаў, малекул або іонаў. Першасная эл.-магн. хваля пры распаўсюджванні ў актыўным асяроддзі стымулюе вымушанае выпрамяненне, тоеснае з ёй па частаце, фазе, напрамку распаўсюджвання і характары палярызацыі. Для павелічэння каэфіцыента ўзмацнення актыўнае асяроддзе змяшчаюць у аб’ёмны рэзанатар. Аптычны квантавы ўзмацняльнік мае малы ўзровень шумаў і высокую адчувальнасць. Выкарыстоўваецца ў выхадных каскадах магутных лазераў, сістэмах аптычнай і далёкай касм. сувязі, радыёастраноміі і інш.

В.В.Валяўка.

т. 1, с. 439

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

А́ТАМНАЯ ФІ́ЗІКА,

раздзел фізікі, прысвечаны вывучэнню будовы і ўласцівасцяў атамаў, а таксама элементарных працэсаў, у якіх яны ўдзельнічаюць. У шырокім сэнсе атамная фізіка (субатамная фізіка) — фізіка мікраскапічных з’яў, якім характэрна перарыўнасць рэчыва і электрамагнітнага выпрамянення і якія падпарадкоўваюцца квантавым законам (гл. Элементарныя часціцы, Атам, Малекула, Фатон).

Гіпотэза, што матэрыя складаецца з атамаў як найменшых непадзельных і нязменных часціц, узнікла ў Стараж. Грэцыі ў 5—33 ст. да нашай эры. Дасканалыя ўяўленні пра атамістычную будову рэчыва склаліся значна пазней. У сярэдзіне 19 ст. дакладна вызначаны паняцці малекулы і атама. У канцы 19 ст. адкрыты электрон, рэнтгенаўскія прамяні і радыеактыўнасць, што дало магчымасць устанавіць складаную будову атама. Сучасную ядз. мадэль атама прапанаваў Э.Рэзерфард у 1911. Гэта мадэль і квантавыя ўяўленні М.Планка, А.Эйнштэйна і інш. далі магчымасць Н.Бору ў 1913 стварыць першую квантавую тэорыю атама і яго спектраў (гл. Бора тэорыя). У 1923 Л. дэ Бройль выказаў ідэю пра хвалевыя ўласцівасці часціц рэчыва, што было пацверджана эксперыментальна ў доследах па дыфракцыі электронаў у 1927 (гл. Дыфракцыя часціц).

Тэарэтычныя асновы атамнай фізікі закладзены ў 1925—28 працамі В.Гайзенберга, Э.Шродынгера, М.Борна, П.Дзірака і інш., у выніку чаго ўзніклі квантавая механіка і квантавая электрадынаміка. На гэтай аснове дадзена тлумачэнне вял. колькасці мікраскапічных з’яў і прадказаны шэраг эфектаў на атамна-малекулярным узроўні (гл. Атамныя спектры, Вымушанае выпрамяненне, Зонная тэорыя, Фотаэфект). Для апісання ўласцівасцяў элементарных часціц і іх узаемадзеянняў створана квантавая тэорыя поля. Развіццё атамнай фізікі прывяло да карэннага перагляду асн. уяўленняў і паняццяў фізікі мікраскапічных з’яў і ўзнікнення новых галін ведаў і тэхн. дастасаванняў, напрыклад квантавай электронікі, мікраэлектронікі, фізікі цвёрдага цела. На Беларусі даследаванні па атамнай фізіцы і сумежных навуках праводзяцца з канца 1950-х г. у ін-тах фіз. і фізіка-тэхн. профілю АН, БДУ, Бел. політэхн. акадэміі і інш.

Літ.:

Зубов В.П. Развитие атомистических представлений до начала XIX века. М. 1965;

Хунд Ф. История квантовой физики Киев, 1980;

Джеммер М. Эволюция понятий квантовой механики: Пер. с англ. М. 1985;

Ельяшевич М.А. Развитие Нильсом Бором квантовой теории атома и принципа соответствия // Успехи физ. наук. 1985. Т. 147, вып. 2.

М.А.Ельяшэвіч.

т. 2, с. 67

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫПРАМЯНЕ́ННЕ электрамагнітнае, свабоднае электрамагнітнае поле, якое існуе незалежна ад крыніц, што яго ствараюць; працэс утварэння свабоднага электрамагнітнага поля. Выпрамяненню ўласцівы т.зв. карпускулярна-хвалевы дуалізм. Асн. хвалевыя характарыстыкі выпрамянення — частата ν (або даўжыня хвалі λ=c/ν), дзе c — скорасць святла ў вакууме), а таксама хвалевы вектар k = 1λ n , дзе n — адзінкавы вектар напрамку распаўсюджвання хвалі. Хвалевыя ўласцівасці выпрамянення праяўляюцца ў наяўнасці інтэрферэнцыі і дыфракцыі (гл. Дыфракцыя хваль, Інтэрферэнцыя хваль). Карпускулярныя ўласцівасці характарызуюцца тым, што кожнай асобнай хвалі з частатой ν і хвалевым вектарам k адпавядае часціца (квант або фатон) з энергіяй E= і імпульсам p = h k , дзе h — Планка пастаянная. Карпускулярныя ўласцівасці праяўляюцца ў квантавых з’явах, напр., фотаэфект, Комптана эфект і інш.

Праяўленне хвалевых ці карпускулярных (квантавых) уласцівасцей выпрамянення залежыць ад яго частаты, па значэннях якой выпрамяненне ўмоўна падзяляецца на дыяпазоны (гл. табл.). <TABLE> Для хваль вял. даўжыні (напр., ЗВЧ, радыёхвалі) энергія квантаў вельмі малая, таму карпускулярныя ўласцівасці выпрамянення практычна не праяўляюцца. З павелічэннем частаты расце энергія квантаў і з інфрачырвонага дыяпазону ўжо пачынаюць пераважаць карпускулярныя ўласцівасці.

Уласцівасці выпрамянення для малых частот апісваюцца класічнай электрадынамікай, для вялікіх — квантавай. Паводле класічных Максвела ўраўненняў выпрамяненне ў кожным пункце прасторы і ў кожны момант часу характарызуецца напружанасцямі электрычнага E і магнітнага H палёў і пераносіць энергію, аб’ёмная шчыльнасць якой ρ = 1 ( E2 + H2 ) . У квантавай тэорыі ўраўненні Максвела поўнасцю захоўваюцца, аднак велічыні E і H маюць іншы сэнс. У гэтым выпадку сувязь паміж хвалевымі і карпускулярнымі ўласцівасцямі выпрамянення мае статыстычны характар: шчыльнасць энергіі эл.-магн. хвалі вызначаецца лікам квантаў у адзінцы аб’ёму N = ρhν , для асобнага кванта імавернасць яго знаходжання ў пэўным аб’ёме прапарцыянальная шчыльнасці энергіі.

Выпрамяненне ўзнікае ў рэчыве пры нераўнамерным руху эл. зарадаў ці змене магн. момантаў, у выніку чаго рэчыва траціць энергію і адбываюцца працэсы выпрамянення. Да іх адносяцца выпрамяненне бачнага, ультрафіялетавага і інфрачырвонага святла атамамі і малекуламі, γ-выпрамяненне атамных ядраў, выпрамяненне радыёхваль антэнамі. Адваротныя працэсы выпрамянення — працэсы паглынання. Пры іх за кошт энергіі выпрамянення павялічваецца энергія рэчыва. Паводле законаў класічнай электрадынамікі сістэма рухомых зараджаных часціц неперарыўна траціць энергію ў выглядзе выпрамянення — адбываецца неперарыўны працэс утварэння эл.-магн. хваль. Аднак у квантавых сістэмах працэсы выпрамянення і паглынання дыскрэтныя і адбываюцца ў адпаведнасці з законамі квантавых пераходаў (гл. Вымушанае выпрамяненне, Спантаннае выпрамяненне).

М.А.Ельяшэвіч, Л.М.Тамільчык.

т. 4, с. 318

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛА́ЗЕРНАЯ ФІ́ЗІКА,

раздзел фізікі, у якім вывучаюцца працэсы генерацыі, узмацнення і распаўсюджвання лазернага выпрамянення, яго ўзаемадзеяння з рознымі асяроддзямі і аб’ектамі; фіз. асновы стварэння і выкарыстання лазераў частка квантавай электронікі.

Узнікла ў 1960-я г. на мяжы оптыкі, радыёфізікі, электронікі і матэрыялазнаўства. Атрымала хуткае развіццё з прычыны асаблівых якасцей лазернага промня: яго надзвычай высокіх кагерэнтнасці, монахраматычнасці, накіравальнасці распаўсюджвання, прасторавай і часавай шчыльнасці энергіі, вельмі малой працягласці асобных імпульсаў. Гэтыя якасці, іх спалучэнні і камбінацыі абумовілі развіццё лазернай тэхнікі — лазерных сродкаў даследавання розных асяроддзяў і аб’ектаў, выканання разнастайных лазерных тэхналогій, у т.л. тонкіх, стварэння аптычнай сувязі, апрацоўкі, запісу і счытвання інфармацыі (гл. Аптычны запіс). Выкарыстанне лазернага выпрамянення выклікала змены шэрагу паняццяў і ўяўленняў оптыкі і інш. галін ведаў. У выніку выкарыстання лазераў выяўлены і даследаваны такія нелінейна-аптычныя з’явы, як генерацыя гармонік, складанне і адыманне частот, вымушанае камбінацыйнае рассеянне, самафакусіроўка і тунэляванне лазернага пучка, чатырохфатоннае змешванне, двухфатоннае паглынанне, амплітудна-фазавая канверсія мадуляцыі, утварэнне салітонаў і інш. Нелінейна-аптычныя з’явы знайшлі шырокае выкарыстанне для кіравання характарыстыкамі лазернага выпрамянення (пры яго генерацыі і распаўсюджванні), вывучэння структуры рэчыва (гл. Лазерная спектраскапія) і дынамікі розных працэсаў у асяроддзях. У імпульсах лазернага выпрамянення фемтасекунднай (10 с) працягласці дасягнуты шчыльнасці магутнасці парадку 10​21 Вт/см2. Сілы ўздзеяння такіх імпульсаў на электроны і ядры атамаў істотна перавышаюць сілы іх узаемадзеяння ў ядрах, што дае магчымасць кіроўнага ўздзеяння на структуру атамаў і малекул. Лазерныя крыніцы выпрамянення выкарыстоўваюцца ў звычайных аптычных прыладах, што значна паляпшае іх характарыстыкі і пашырае магчымасці, і для стварэння прынцыпова новых прылад і метадаў даследавання, новых тэхн. сродкаў (аптычныя дыскі. лазерныя прынтэры, аудыё- і відэапрайгравальнікі, лініі валаконна-аптычнай сувязі, галаграфічныя і кантрольна-вымяральныя прылады). Дасягненні Л.ф. шырока выкарыстоўваюцца ў розных галінах навукі, прамысл. тэхналогіях, у ваен. тэхніцы, касманаўтыцы, медыцыне.

На Беларусі даследаванні па Л.ф. пачаліся ў 1961 у Ін-це фізікі АН пад кіраўніцтвам Б.І.Сцяпанава. Праводзяцца ў ін-тах фіз. і фізіка-тэхн. профілю Нац. АН Беларусі, установах адукацыі і прамысл. арг-цыях. Прадказана і атрымана генерацыя на растворах складаных малекул, створана серыя лазераў з плаўнай перастройкай частаты ў шырокім дыяпазоне; прапанаваны метады разліку і кіравання энергет., часавымі, частотнымі, палярызацыйнымі і вуглавымі характарыстыкамі лазераў і лазернага выпрамянення; створаны новыя тыпы лазерных крыніц святла агульнага і спец. прызначэння. Распрацаваны фіз. асновы дынамічнай галаграфіі, вывучаны заканамернасці ўзнікнення і працякання многіх нелінейна аптычных з’яў і распаўсюджвання святла ў нелінейна-аптычных асяроддзях.

Літ.:

Апанасевич П.А Основы теории взаимодействия света с веществом. Мн., 1977;

Коротеев Н.И., Шумай И.Л. Физика мощного лазерного излучения. М., 1991;

Ярив А. Введение в оптическую электронику: Пер. с англ. М., 1983;

Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М., 1988.

П.А.Апанасевіч.

т. 9, с. 101

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)