Адваротныя трыганаметрычныя функцыі, гл. Кругавыя функцыі

Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)

АДВАРО́ТНЫЯ ТРЫГАНАМЕТРЫ́ЧНЫЯ ФУ́НКЦЫІ, кругавыя функцыі,

функцыі, якія вызначаюць дугу (лік) па дадзеным значэнні яе трыганаметрычных функцый, што разглядаюцца на пэўных прамежках манатоннасці.

Адрозніваюць Arcsinx («арксінус x») — мноства функцый, адваротных да sinx; Arccosx («арккосінус x») — да cosx; Arctgx («арктангенс х») — да tgx; Arcctgx (арккатангенс x») — да ctgx; Arcsecx («арксеканс x») да secx; Arccosecx («арккасеканс x») — да cosecx. Функцыі Arcsinx і Arccosx вызначаны пры |x|1, Arctgx і Arcctgx — для ўсіх сапраўдных x, Arcsecx і Arccosecx|x|1 (2 апошнія выкарыстоўваюцца рэдка). У выніку перыядычнасці трыганаметрычных функцый для кожнай з іх існуе бесканечнае мноства адваротных функцый, гал. значэнні якіх вызначаюцца ўмовамі: -π/2 ≤ arcsin x ≤ π/2; 0 ≤ arccos x ≤ π; -π/2 ≤ arctg x ≤ π/2; 0 ≤ arsec x ≤ π; 0 ≤ arcctg x ≤ π; -π/2 ≤ arccosec x ≤ π/2. Суадносіны паміж трыганаметрычнымі функцыямі можна замяніць суадносінамі паміж адваротнымі трыганаметрычнымі функцыямі, напр., з роўнасці tgx = sinx 1 sin2x вынікае, што arcsinx = arctg x 1 x2 .

Графікі адваротных трыганаметрычных функцый: 1 — арксінуса; 2 — арккосінуса; 3 — арктангенса; 4 — арккатангенса.

т. 1, с. 99

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДВАРО́ТНАЯ ТЭАРЭ́МА,

тэарэма, умовай якой з’яўляецца выснова зыходнай (прамой) тэарэмы, а высновай — умова. Прамая і адваротная тэарэма — узаемна адваротныя. З іх праўдзівасці вынікае, што выкананне ўмовы адной з іх не толькі дастаткова, але і неабходна для праўдзівасці высновы, напр., тэарэмы: «калі 2 вуглы трохвугольніка роўныя, то іх бісектрысы роўныя» і «калі 2 бісектрысы трохвугольніка роўныя, то адпаведныя ім вуглы роўныя», — узаемна адваротныя і абедзве праўдзівыя. З праўдзівасці якой-н. тэарэмы не вынікае праўдзівасць адваротнай тэарэмы да яе, напр., тэарэма: «калі лік дзеліцца на 6, то ён дзеліцца на 3» — праўдзівая, а адваротная тэарэма: «калі лік дзеліцца на 3, то ён дзеліцца на 6» — непраўдзівая.

т. 1, с. 98

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАРМАНІ́ЧНЫ РАД,

лікавы рад 1 + 1/2 + 1/3 + ... +1/n + ..., члены якога — лікі, адваротныя лікам натуральнага рада. Разбежнасць гарманічнага рада даказана Г.В.Лейбніцам (1673); асімптатычную формулу сумы першых яго n членаў атрымаў Л.Эйлер (1740); Sn=С+ ln n+εn, дзе С = 0,57721566... — пастаянная Эйлера; εn → 0 пры n → ∞. Кожны член гарманічнага рада (пачынаючы з 2-га) ёсць сярэдняе гарманічнае (гл. Сярэдняе) сваіх суседзяў (адсюль назва).

т. 5, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАЛІТЫ́ЧНАЯ ФУ́НКЦЫЯ,

функцыя, значэнне якой у кожным пункце яе вобласці вызначэння роўнае суме ступеннага шэрага, які збягаецца ў некаторым наваколлі гэтага пункта. Да аналітычнай функцыі адносяцца: рацыянальная функцыя, паказнікавая функцыя, лагарыфмічная функцыя, трыганаметрычныя функцыі, адваротныя трыганаметрычныя функцыі, іх разнастайныя кампазіцыі, а таксама функцыі, адваротныя да гэтых кампазіцый. Існуюць аналітычныя функцыі аднаго або некалькіх рэчаісных ці камплексных пераменных. Функцыя 𝑓(z) аднаго комплекснага пераменнага z=x+iy наз. аналітычнай функцыяй у пункце z0, калі ў некаторым наваколлі h гэтага пункта існуе канечная вытворная f′(z) = lim h 0 f(z + h) f(z) h (дыферэнцыравальнасць функцыі), што мае месца ў тым і толькі ў тым выпадку, калі выконваецца ўмова Кашы—Рымана dt dz̅ = 0 , дзе = x + y. Асновы тэорыі аналітычнай функцыі былі закладзены А.Кашы, Б.Рыманам і К.Веерштрасам, С.В.Кавалеўскай і інш. На Беларусі даследаванні па тэорыі аналітычнай функцыі пачаліся ў 1930-я г. ў БДУ (М.В.Ламбін, М.Л.Лукомская), з 1960-х г. праводзяцца ў АН, БДУ і інш. ВНУ рэспублікі (Ф.Дз.Гахаў, Э.І.Звяровіч і інш.). Аналітычныя функцыі маюць шматлікія дастасаванні ў матэм. аналізе (вылічэнне вызначаных інтэгралаў), у геаметрыі (канформныя адлюстраванні), у тэорыі пругкасці, гідрадынаміцы, электрадынаміцы і інш. навуках. Гл. таксама Кашы інтэграл, Кашы тэарэма.

Літ.:

Маркушевич А.И. Теория аналитических функций. Т. 1—2. М., 1967—68;

Шабат Б.В. Введение в комплексный анализ. Ч. 1—2. 3 изд. М., 1985;

Гахов Ф.Д. Краевые задачи. 3 изд. М., 1977.

Э.І.Звяровіч.

т. 1, с. 335

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДВАРО́ТНЫХ АДНО́СІН ЗАКО́Н,

фіксуе залежнасць паміж аб’ёмам і зместам паняццяў: чым шырэйшы аб’ём паняцця, тым вузейшы яго змест, і наадварот. Калі аб’ём аднаго паняцця складае частку аб’ёму другога, то для іх зместу ўласцівыя адваротныя адносіны. Прынята лічыць, што першае вызначэнне гэтага закону належыць логікам Пор-Раяля (1660-я г.), але найб. вядомая фармулёўка дадзена І.Кантам. Адваротных адносін закон дае магчымасць тлумачыць лагічныя аперацыі абагульнення і абмежавання паняццяў. Калі ідуць ад паняццяў меншага аб’ёму да паняццяў большага аб’ёму, то за кошт звужэння зместу адбываецца іх абагульненне, калі ж ад паняццяў большага да меншага, то з-за пашырэння зместу адбываецца абмежаванне.

У.Ф.Бяркоў.

т. 1, с. 99

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕ́ТРАЗЬ у архітэктуры, элемент купальнай канструкцыі, які забяспечвае пераход ад квадратнай у плане падкупальнай прасторы да акружнасці купала ці яго барабана; адзін з асн. канструкцыйна-маст. элементаў візант. і стараж.-рус. архітэктуры. Вядомы ў архітэктуры рэнесансу, барока, класіцызму і інш. На Беларусі ветразі з’явіліся ў мураванай культавай архітэктуры 11—12 ст. (Полацкі Сафійскі сабор, Гродзенская Барысаглебская царква). Існуюць 2 асн. іх разнавіднасці: у выглядзе сферычных трохвугольнікаў (павернуты вяршыняй уніз, выкарыстоўваюцца пры пераходзе ад чацверыкоў да круглага ў плане купала або барабана) і плоскіх трохвугольнікаў (пры пераходзе да васьмерыкоў).

У драўляным дойлідстве Беларусі 17—19 ст. вядомы ветразі сферычныя, плоскія нахіленыя, гарыз. (кансольна-бэлечныя); прамыя (пры пераходзе чацверыка ў васьмярык) і адваротныя (пры пераходзе васьмерыка ў чацвярык; Рубельская Міхайлаўская царква і Кажан-Гарадоцкая Мікалаеўская царква).

т. 4, с. 129

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДВАРО́ТНЫ СЛО́ЎНІК,

інверсійны слоўнік, тып лінгвістычнага даведніка, у якім рэестравыя словы размяшчаюцца ў алфавітным парадку з улікам іх палітарнага прачытання справа налева, а не злева направа, як у звычайных алфавітных слоўніках. Рэестравыя адзінкі адваротнага слоўніка выраўноўваюцца ў наборы па правым краі:

самба

бомба

пломба

клумба і г.д.

Побач размяшчаюцца словы з аднолькавымі канчаткамі і суфіксамі, што дазваляе высвятляць словаўтваральную і марфемную структуру слова, вызначаць тып словазмянення рэестравай адзінкі, выяўляць прадукцыйнасць пэўнага словаўтваральнага тыпу, распрацоўваць рыфмаў слоўнікі і інш. Адваротныя слоўнікі падзяляюцца на слоўнікі-індэксы і слоўнікі з самаст. рэестрамі. Адваротны слоўнік створаны больш чым для 30 моў. На матэрыяле бел. мовы распрацаваны: адваротны слоўнік мікратапонімаў (змешчаны ў слоўніку «Мікратапанімія Беларусі», 1974), «Адваротны слоўнік сучаснай беларускай мовы» А.Барташэвіча і І.Камендацкай (т. 1—4, 1988—89), які падае каля 100 тыс. слоў з акад. «Тлумачальнага слоўніка беларускай мовы» (т. 1—5, 1977—84); «Адваротны слоўнік беларускай мовы» Л.М.Вардамацкага і В.І.Несцяровіча (1994).

В.К.Шчэрбін.

т. 1, с. 99

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВА́ДКІЯ КРЫШТАЛІ́,

стан рэчыва, прамежкавы паміж цвёрдым крышталічным і ізатропным вадкім. Характарызуецца цякучасцю і поўнай ці частковай адсутнасцю трансляцыйнага парадку ў структуры пры захаванні арыентацыйнага парадку ў размяшчэнні малекул (гл. Далёкі і блізкі парадак). Вадкія крышталі маюць пэўны тэмпературны інтэрвал існавання.

Пераходы цвёрдага крышталічнага рэчыва ў вадкі крышталь і далей у ізатропную вадкасць і адваротныя працэсы з’яўляюцца фазавымі пераходамі. Паводле спосабу атрымання вадкія крышталі падзяляюцца на ліятропныя (утвараюцца пры растварэнні шэрагу злучэнняў у ізатропных вадкасцях; напр., сістэма мыла — вада) і тэрматропныя (узнікаюць пры плаўленні некаторых рэчываў). Па арганізацыі малекулярнай структуры адрозніваюць вадкія крышталі нематычныя (з вылучаным напрамкам арыентацыі малекул — дырэктарам і адсутнасцю трансляцыйнага парадку), смектычныя (з пэўнай ступенню трансляцыйнага парадку — слаістасцю) і халестэрычныя (нематычныя, у якіх дырэктары сумежных слаёў утвараюць паміж сабою вугал, з-за чаго ўзнікае вінтавая структура). Узаемная арыентаванасць малекул абумоўлівае анізатрапію фіз. уласцівасцей вадкіх крышталёў: пругкасці, электраправоднасці, магн. успрымальнасці, дыэлектрычнай пранікальнасці і інш., што выкарыстоўваецца для выяўлення і рэгістрацыі фіз. уздзеянняў (эл. і магн. палёў, змены т-ры і інш.). Многія арган. рэчывы чалавечага арганізма (эфіры халестэрыну, міэлін, біямембраны) знаходзяцца ў стане вадкіх крышталёў.

Вадкія крышталі выкарыстоўваюцца ў інфарм. дысплеях (калькулятары, электронныя гадзіннікі, вымяральныя прылады і інш.), пераўтваральніках відарысаў, прыладах цеплабачання, мед. тэрмаіндыкатарах і інш. На Беларусі даследаванні вадкіх крышталёў праводзяцца ў БДУ, Мінскім і Віцебскім мед. ін-тах, Бел. ун-це інфарматыкі і радыёэлектронікі, навук.-вытв. аб’яднанні «Інтэграл» і інш.

Літ.:

Чандрасекар С. Жидкие кристаллы: Пер. с англ. М., 1980;

Текстурообразование и структурная упорядоченность в жидких кристаллах. Мн., 1987.

В.І.Навуменка.

т. 3, с. 439

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫПРАМЯНЕ́ННЕ электрамагнітнае, свабоднае электрамагнітнае поле, якое існуе незалежна ад крыніц, што яго ствараюць; працэс утварэння свабоднага электрамагнітнага поля. Выпрамяненню ўласцівы т.зв. карпускулярна-хвалевы дуалізм. Асн. хвалевыя характарыстыкі выпрамянення — частата ν (або даўжыня хвалі λ=c/ν), дзе c — скорасць святла ў вакууме), а таксама хвалевы вектар k = 1λ n , дзе n — адзінкавы вектар напрамку распаўсюджвання хвалі. Хвалевыя ўласцівасці выпрамянення праяўляюцца ў наяўнасці інтэрферэнцыі і дыфракцыі (гл. Дыфракцыя хваль, Інтэрферэнцыя хваль). Карпускулярныя ўласцівасці характарызуюцца тым, што кожнай асобнай хвалі з частатой ν і хвалевым вектарам k адпавядае часціца (квант або фатон) з энергіяй E= і імпульсам p = h k , дзе h — Планка пастаянная. Карпускулярныя ўласцівасці праяўляюцца ў квантавых з’явах, напр., фотаэфект, Комптана эфект і інш.

Праяўленне хвалевых ці карпускулярных (квантавых) уласцівасцей выпрамянення залежыць ад яго частаты, па значэннях якой выпрамяненне ўмоўна падзяляецца на дыяпазоны (гл. табл.). <TABLE> Для хваль вял. даўжыні (напр., ЗВЧ, радыёхвалі) энергія квантаў вельмі малая, таму карпускулярныя ўласцівасці выпрамянення практычна не праяўляюцца. З павелічэннем частаты расце энергія квантаў і з інфрачырвонага дыяпазону ўжо пачынаюць пераважаць карпускулярныя ўласцівасці.

Уласцівасці выпрамянення для малых частот апісваюцца класічнай электрадынамікай, для вялікіх — квантавай. Паводле класічных Максвела ўраўненняў выпрамяненне ў кожным пункце прасторы і ў кожны момант часу характарызуецца напружанасцямі электрычнага E і магнітнага H палёў і пераносіць энергію, аб’ёмная шчыльнасць якой ρ = 1 ( E2 + H2 ) . У квантавай тэорыі ўраўненні Максвела поўнасцю захоўваюцца, аднак велічыні E і H маюць іншы сэнс. У гэтым выпадку сувязь паміж хвалевымі і карпускулярнымі ўласцівасцямі выпрамянення мае статыстычны характар: шчыльнасць энергіі эл.-магн. хвалі вызначаецца лікам квантаў у адзінцы аб’ёму N = ρhν , для асобнага кванта імавернасць яго знаходжання ў пэўным аб’ёме прапарцыянальная шчыльнасці энергіі.

Выпрамяненне ўзнікае ў рэчыве пры нераўнамерным руху эл. зарадаў ці змене магн. момантаў, у выніку чаго рэчыва траціць энергію і адбываюцца працэсы выпрамянення. Да іх адносяцца выпрамяненне бачнага, ультрафіялетавага і інфрачырвонага святла атамамі і малекуламі, γ-выпрамяненне атамных ядраў, выпрамяненне радыёхваль антэнамі. Адваротныя працэсы выпрамянення — працэсы паглынання. Пры іх за кошт энергіі выпрамянення павялічваецца энергія рэчыва. Паводле законаў класічнай электрадынамікі сістэма рухомых зараджаных часціц неперарыўна траціць энергію ў выглядзе выпрамянення — адбываецца неперарыўны працэс утварэння эл.-магн. хваль. Аднак у квантавых сістэмах працэсы выпрамянення і паглынання дыскрэтныя і адбываюцца ў адпаведнасці з законамі квантавых пераходаў (гл. Вымушанае выпрамяненне, Спантаннае выпрамяненне).

М.А.Ельяшэвіч, Л.М.Тамільчык.

т. 4, с. 318

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)