Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)
АБЕРА́ЦЫІ АПТЫ́ЧНЫХ СІСТЭ́М
(ад лац. aberratio адхіленне),
скажэнні відарысаў у аптычных сістэмах. Абумоўлены недасканаласцю пераламляльных і адбівальных паверхняў аптычных сістэм, выкарыстаннем шырокіх пучкоў прамянёў нямонахраматычнага святла. Выяўляюцца ў парушэнні геам. падабенства відарыса і арыгінала або афарбоўцы відарыса. Адрозніваюць геам., храматычныя і дыфракцыйныя аберацыі аптычных сістэм.
Геаметрычныя выяўляюцца ў монахраматычным святле, падзяляюцца на астыгматызм, дысторсію, кому і сферычную аберацыю (відарыс пункта мае выгляд кружка рассейвання; абумоўлена тым, што вонкавыя і цэнтр. зоны лінзы са сферычнымі паверхнямі даюць відарыс у розных месцах аптычнай восі). Храматычныя ўзнікаюць у натуральным святле ў выніку неаднолькавага пераламлення прамянёў святла з рознай даўжынёй хвалі (адсутнічаюць у аптычных сістэмах з адбівальнымі паверхнямі); дыфракцыйныя — пры дыфракцыі святла на дыяфрагмах, аправах лінзаў і люстэркаў; абмяжоўваюць раздзяляльную здольнасць аптычнай прылады.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АНАСТЫГМА́Т
(ад ан... + астыгматызм),
складаны аб’ектыў, які практычна пазбаўлены ўсіх аберацый (гл.Аберацыі аптычных сістэм). Пры вял. святласіле выразны відарыс па ўсім полі. Складаецца са спец. падабраных лінзаў. Выкарыстоўваецца ў тэхн. і маст. фатаграфіі і кінематаграфіі.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АХРАМА́Т
(ад грэч. achromatos бясколерны),
аб’ектыў, у якім выпраўлена сферычная і часткова храматычная аберацыя. У залежнасці ад прызначэння ахрамата храматычную аберацыю выпраўляюць толькі для 2 пэўных даўжыняў хваляў, напрыклад у візуальных прыладах — для жоўтага і зялёнага прамянёў, у фатаграфічных — для блакітнага і фіялетавага. Ахрамат выкарыстоўваюць у дальнамерах, біноклях, фотаапаратах, мікраскопах і інш.Гл. таксама Аберацыі аптычных сістэм.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АСТРАНАМІ́ЧНЫЯ ПАСТАЯ́ННЫЯ,
універсальныя параметры, якія характарызуюць арбіты, масы, памеры, форму, арыентацыю і рух касмічных целаў. Вызначаюцца са шматлікіх астр. назіранняў, некаторыя — тэарэтычна.
Сістэма астранамічных пастаянных уключае: 2 вызначальныя (гаўсава гравітацыйная пастаянная k = 0,017202009895, скорасць святла ў вакууме c = 299792458 м/с), 9 асноўных (напр., гравітацыйная пастаянная Ньютана-Кавендыша G = 6,6720·1011 м³/кг·с, экватарыяльны радыус Зямлі ae = 6378140 м і інш.), шэраг вытворных пастаянных (напр., астранамічная адзінка A = 1,49597870·1011м, пастаянная аберацыі x = 20,49552 і інш.), а таксама масы і экватарыяльныя радыусы вял. планет і Сонца. Астранамічныя пастаянныя выкарыстоўваюцца пры рашэнні задач дынамікі Сонечнай сістэмы, дастасавальных задач геадэзіі, картаграфіі, касманаўтыкі, навігацыі, вылічэнні эфемерыд, апрацоўцы астр. назіранняў у адзінай сістэме каардынат.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АБ’ЕКТЫ́Ў,
аптычная сістэма або яе частка, якая стварае сапраўдны адваротны відарыс аб’екта. Створаны аб’ектывам відарыс разглядаецца праз акуляр (звычайна пасля абарачальнай сістэмы) ці фіксуецца на экране, фатагр. плёнцы, фотакатодзе перадавальнай тэлевізійнай трубкі і інш. Бываюць лінзавыя, люстраныя і люстрана-лінзавыя.
Асн. аптычныя характарыстыкі: фокусная адлегласць f; дыяметр уваходнай зрэнкі d; святласіла d/f; вугал (поле) зроку; раздзяляльная здольнасць. Аб’ектывы тэлескапічных сістэм маюць фокусную адлегласць да некалькіх метраў і дыяметр уваходнай зрэнкі ад некалькіх сантыметраў (у геад., вымяральных і падзорных трубах) да некалькіх метраў (у тэлескопах-рэфрактарах), аб’ектывы мікраскопаў — фокусную адлегласць 1,5—40 мм, малафарматных фотаапаратаў — 6—2000 мм (для аматарскай практыкі 28—200 мм). Фатагр. аб’ектывы бываюць нармальныя (вугал зроку 40—50°), шырокавугольныя (больш за 70°), звышшырокавугольныя (больш за 83°, аб’ектывы тыпу «рыбіна вока» больш за 180°), даўгафокусныя (менш за 39°) і звышдаўгафокусныя (менш за 9°). Канструкцыя складаных аб’ектываў дазваляе выправіць храматычную і геам.аберацыі аптычных сістэм. Большасць аб’ектываў — анастыгматы. Аб’ектывы з пераменнай фокуснай адлегласцю (панкратычныя), у якіх плоскасць відарыса і святласіла нязменныя, выкарыстоўваюцца ў кіна- і тэлекамерах, спец. прамянёвастойкія — у лазерных сістэмах. Для павелічэння фіз. святласілы аб’ектывы прасвятляюць (гл.Прасвятленне оптыкі).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГЕАМЕТРЫ́ЧНАЯ О́ПТЫКА,
раздзел оптыкі, які вывучае законы распаўсюджвання святла на аснове ўяўлення пра светлавыя прамяні як лініі, уздоўж якіх перамяшчаецца светлавая энергія. У аднародным асяроддзі прамяні прамалінейныя, у неаднародным скрыўляюцца, на паверхні раздзела розных асяроддзяў мяняюць свой напрамак паводле законаў пераламлення і адбіцця святла. Асноўныя законы геаметрычнай оптыкі вынікаюць з Максвела ўраўненняў, калі даўжыня светлавой хвалі значна меншая за памеры дэталей і неаднароднасцей, праз якія праходзіць святло; гэтыя законы фармулююцца на аснове Ферма прынцыпу.
Уяўленне пра светлавыя прамяні ўзнікла ў ант. навуцы. У 3 ст. да н.э.Эўклід сфармуляваў закон прамалінейнага распаўсюджвання святла і закон адбіцця святла. Геаметрычная оптыка пачала хутка развівацца ў сувязі з вынаходствам у 17 ст. аптычных прылад (лупа, падзорная труба, тэлескоп, мікраскоп), у гэтым асн. ролю адыгралі даследаванні Г.Галілея, І.Кеплера, В.Дэкарта і В.Снеліуса (эксперыментальна адкрыў закон пераламлення святла). У далейшым геаметрычная оптыка развівалася як дастасавальная навука, вынікі якой выкарыстоўваліся для стварэння розных аптычных прылад. Для атрымання нескажонага відарыса аптычнага лінзавая сістэма адпавядае пэўным патрабаванням: пучкі прамянёў, што выходзяць з некаторага пункта аб’екта, праходзяць праз сістэму і збіраюцца ў адзін пункт; відарыс геаметрычна падобны да аб’екта і не скажае яго афарбоўкі. Любая аптычная сістэма задавальняе патрабаванні, не звязаныя афарбоўкай, калі відарыс ствараецца параксіянальнымі прамянямі (бясконца блізкімі да аптычнай восі). Фактычна ў стварэнні відарыса ўдзельнічаюць шырокія пучкі прамянёў, нахіленыя да восі пад значнымі вугламі. У выніку наяўнасці аберацый аптычных сістэм яны не задавальняюць гэтыя патрабаванні. На аснове законаў геаметрычную оптыку памяншаюць аберацыі да дапушчальна малых значэнняў падборам гатункаў шкла, формы лінзаў і іх узаемнага размяшчэння. Для праектавання асабліва высакаякасных аптычных сістэм карыстаюцца таксама хвалевай тэорыяй святла.
Асн. палажэнні і законы геаметрычнай оптыкі выкарыстоўваюць пры праектаванні лінзавых аптычных сістэм (аб’ектывы, мікраскопы, тэлескопы і інш.), распрацоўцы і даследаванні лазерных рэзанатараў, прылад з валаконна-аптычнымі элементамі, факусатараў і канцэнтратараў светлавой, у т. л. сонечнай, энергіі, сістэм асвятлення і сігналізацыі ў аўтамаб., паветр. і марскім транспарце.
Літ.:
Слюсарев Г.Г. Методы расчета оптических систем. 2 изд. Л., 1969;
Борн М., Вольф Э. Основы оптики: Пер. с англ. М., 1970;