ВАЛЬФРА́МАВЫЯ СПЛА́ВЫ,

сплавы на аснове вальфраму. Асн. ўласцівасці вальфрамавых сплаваў — высокія т-ры плаўлення і рэкрышталізацыі, гарачатрываласць. У якасці дадаткаў выкарыстоўваюць металы (малібдэн Mo, рэній Re, медзь Cu, нікель Ni, серабро Ag), аксіды торыю, крэмнію, карбіды танталу, цырконію і інш. злучэнні, якія паляпшаюць пластычнасць, тэхнал. і фіз. ўласцівасці чыстага вальфраму.

Атрымліваюць вальфрамавыя сплавы вакуумнай (дугавой ці электронна-прамянёвай) плаўкай, метадамі парашковай металургіі. Выкарыстоўваюцца ў авіябудаванні і касм. тэхніцы сплавы з Mo (15%), для вытв-сці тэрмапар да 2000 °C сплавы з Re (20 і 5%), зносаўстойлівых кантактаў, электродаў для кантактнай зваркі сплавы з Cu ці Ag (12—30%), як экраны для аховы ў радыетэрапіі сплавы з Ni (3—7%) і Cu (2—5%). Сплавы, легіраваныя аксідамі, выкарыстоўваюцца як матэрыялы катодаў для электронных і электратэхн. прылад і ніцяў лямпаў напальвання. Да вальфрамавых сплаваў адносяць таксама сплавы на аснове інш. металаў (напр., жалеза Fe), якія маюць вальфрам. На аснове Fe атрымліваюць феравальфрам (70—72% W і 1,5—6% Мо) для легіравання вальфрамавых сталяў: канструкцыйнай (да 0,6% W), гарачатрывалай, інструментальнай (да 18% W).

Г.Г.Паніч.

т. 3, с. 494

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛЬВАНАМАГНІ́ТНЫЯ З’Я́ВЫ,

з’явы, звязаныя з уздзеяннем магнітнага поля на металы і паўправаднікі, па якіх працякае электрычны ток. Адрозніваюць няцотныя (характарыстыкі гальванамагнітных з’яў мяняюць знак пры змене напрамку поля) і цотныя (не мяняюць знака); падоўжныя (магн. поле накіравана ўздоўж напрамку току) і папярочныя (упоперак да напрамку) гальванамагнітныя з’явы, напр. Хола эфект, магнітарэзістыўны эфект, падоўжны гальванамагн. эфект. Выкарыстоўваюцца для вымярэння велічыні магн. палёў, даследавання электроннага энергет. спектра і механізму рассейвання носьбітаў зараду ў металах і паўправадніках, генерацыі і ўзмацнення эл. поля і інш.

Гальванамагнітныя з’явы абумоўлены скрыўленнем траекторый носьбітаў зараду (электронаў праводнасці і дзірак) у магн. полі пад уздзеяннем Лорэнца сілы. Ва ўсіх металах і паўправадніках (акрамя ферамагнетыкаў) з павелічэннем поля павялічваецца ўдзельнае супраціўленне. Павелічэнне супраціўлення металаў у магн. полі, паралельным току, наз. падоўжным гальванамагнітным эфектам. У тонкіх плёнках і дратах выяўляецца залежнасць гальванамагнітных з’яў ад памераў і формы даследаванага ўзору (памерныя эфекты); у моцных магн. палях — квантавыя эфекты, якія вызначаюць неманатонную залежнасць пастаяннай Хола і супраціўлення ад параметраў поля. Гл. таксама Тэрмамагнітныя з’явы.

Літ.:

Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. 2 изд. М., 1990;

Блейкмор Дж. Физика твердого тела: Пер. с англ. М., 1988.

Ф.А.Ткачэнка.

т. 4, с. 475

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАНТАНО́ІДЫ (ад лантан + грэч. eidos выгляд, від),

сям’я з 14 хім. элементаў VI перыяду перыяд. сістэмы з ат. н. 58—71, размешчаных услед за лантанам: цэрый Ce, празеадым Pr, неадым Nd, праметый Pm, самарый Sm, еўропій Eu, гадаліній Gd, тэрбій Tb, дыспрозій Dy, гольмій Ho, эрбій Er, тулій Tm, ітэрбій Yb, лютэцый Lu. Адносяцца да рэдказямельных элементаў. Падзяляюць на цэрыевую (Ce—Eu; лёгкія Л.) і ітрыевую падгрупу (Gd—Lu; цяжкія Л.). Устарэлая назва — лантаніды.

Л. — серабрыста-белыя металы, некат. (Pr, Nd) з жоўтым адценнем. Пластычныя, электраправодныя, лёгка паддаюцца мех. апрацоўцы. Маюць блізкія хім ўласцівасці, што абумоўлена падабенствам канфігурацый вонкавых электронных абалонак. У хім. злучэннях характэрная ступень акіслення +3. У паветры акісляюцца (лёгкія Л. пры пакаёвай т-ры, астатнія пры 180—200 °C). Узаемадзейнічаюць з вадой з вылучэннем вадароду і ўтварэннем нерастваральных гідраксідаў, з к-тамі (салянай, сернай, азотнай), пры награванні — з галагенамі, азотам, борам, серай. Аксіды, фтарыды, сульфіды Л. — тугаплаўкія рэчывы (напр., для аксідаў tпл 2200—2500 °C). Утвараюць шматлікія інтэрметал. і комплексныя злучэнні. Выкарыстоўваюцца як легіруючыя дабаўкі для чыгуну, сталі і сплаваў каляровых металаў, гетэры ў электронных прыборах, кампаненты магн матэрыялаў, акумулятараў вадароду, міш-металу і інш.

І.В.Боднар.

т. 9, с. 125

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРА́НЖАВАЯ ПРАВІ́НЦЫЯ, Аранжавая Рэспубліка (англ. Orange Free State),

правінцыя ў цэнтр. ч. Паўд.-Афрыканскай Рэспублікі. Мяжуе з прав. Капская, Трансвааль і Наталь, на ПдУ — з Лесота. Пл. 129,2 тыс. км², нас. 1,8 млн. чал. (1985). Насельніцтва — банту і сута. Адм. ц.г. Блумфантэйн. Аранжавая правінцыя займае ч. ўнутраных плато — на З Плато Кап, якое на У пераходзіць у Высокі Велд і Драконавы горы (выш. да 2300 м). Клімат субтрапічны, ападкаў 250—900 мм за год. Бываюць замаразкі і засухі. Рака Аранжавая з прытокамі Вааль і Каледан упадае ў Атлантычны ак., на ёй ГЭС і вадасховішчы. Здабываюць золата, уранавыя руды і алмазы. Развіты маш.-буд., металаапр., металургічная (каляровыя металы), хім., гарбарна-абутковая, харч. прам-сць. У сельскай гаспадарцы пераважае пашавая жывёлагадоўля (буйн. раг. жывёла, авечкі). Земляробства на багатых глебах (кукуруза, пшаніца, агародніна, тытунь, цытрусавыя). Транспарт чыг. і аўтамабільны.

Першыя сем’і афрыканераў (бураў) на тэр. Аранжавай правінцыі з’явіліся ў 1830-я г. Пераадолеўшы супраціўленне карэнных жыхароў — плямёнаў басута, яны заснавалі ў 1837 самаст. дзяржаву. У 1854 буры абвясцілі стварэнне Аранжавай Свабоднай дзяржавы. У саюзе з Трансваалем яна ўдзельнічала ў англа-бурскай вайне 1899—1902. З 1900 — брыт. калонія, у 1907 атрымала самакіраванне. З 1910 разам з трыма інш. калоніямі ў складзе Паўд.-Афрыканскага Саюза (з 1961 ПАР).

т. 1, с. 453

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАЛАГЕНІ́Я (ад металы + грэч. genos нараджэнне),

раздзел вучэння аб карысных выкапнях, які даследуе геал. і геахім. заканамернасці размяшчэння рудных радовішчаў у прасторы і часе. Тэрмін уведзены ў 1892 франц. геолагам Л. дэ Лане. Асн. задача М. — перспектыўная ацэнка руданоснасці геал. структур і эпох. М. падзяляецца на: эндагенную (даследуе радовішчы металічных руд, утварэнне якіх звязана з глыбіннымі працэсамі); экзагенную (радовішчы жалеза, нікелю, марганцу і інш., утвораныя ў паверхневых умовах пры выветрыванні горных парод і асадканамнажэнні ў водных басейнах); агульную (тэарэт. асновы і агульныя заканамернасці пашырэння рудных фармацый); рэгіянальную (руданосныя плошчы і рудныя радовішчы ў межах геал. рэгіёна, таксама адносна тэктанічных структур, тыпаў горных парод і інш.); спецыяльную (заканамернасці пашырэння ў часе і прасторы арудзянення аднаго металу, напр., берылію, жалеза ці комплексу металаў, напр., медна-нікелевых сульфідных руд).

Рудныя комплексы металаў пераважна прымеркаваны да асобных рэгіёнаў зямнога шара, якія наз. металагенічнымі правінцыямі, узнікненне іх абумоўлена геал. будовай і геал. гісторыяй гэтых тэрыторый. У геал. гісторыі Зямлі вылучаны металагенічныя эпохі — пэўныя перыяды часу назапашвання металаў на асобных участках зямной кары ў выглядзе радовішчаў. Рэзка адрозніваюцца ў металагенічных адносінах геасінкліналі, для якіх характэрны эпохі глыбіннага рудаўтварэння, і платформы, што з’яўляюцца абласцямі пашырэння рудных радовішчаў паверхневага генезісу. У выніку правядзення металагенічных даследаванняў складаюцца металагенічныя і прагнозныя карты.

Я.І.Аношка.

т. 10, с. 304

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЕВА́ДА (Nevada),

штат на З ЗША. Пл. 286,4 тыс. км2. Нас. 1746,9 тыс. чал. (1998). Адм. ц. — Карсан-Сіці, найб. гарады Лас-Вегас і Рына. Большая ч. штата ў горнай бяссцёкавай вобласці Вялікага Басейна; на З — адгор’і хр. Сьера-Невада. Клімат умераны, кантынентальны, вельмі сухі. Сярэдняя т-ра студз. ў катлавінах 0—2 °C, ліп. 20—22 °C. Ападкаў каля 200 мм за год (каля падножжа Сьера-Невады 100 мм). Рэк мала, яны малаводныя, на ПдУр. Каларада. Расліннасць паўпустынь і пустынь. Гал. галіны гаспадаркі — абслугоўванне турыстаў і горная прам-сць. Развіты індустрыя адпачынку і забаў агульнанац. значэння, турызм, курортная справа (кліматычныя курорты); 42,6% працоўных занята ў сферы абслугоўвання. Вытв-сць электраэнергіі 26,6 млрд. кВт·гадз (1998). Працуюць электрастанцыі на каменным вугалі і прыродным газе. Буйная ГЭС Гувер на р. Каларада. Здабыча руд золата, медзі, серабра, вальфраму, жалеза, марганцу, малібдэну і поліметалаў, барыту, дыятаміту. Прадпрыемствы выпускаюць каляровыя металы, харч. прадукты, адзенне, пластмасы, асобныя віды абсталявання (аэракасмічнае, ірыгацыйнае, сейсмічнага кантролю і інш.). Гал. галіна сельскай гаспадаркі — экстэнсіўная мясная жывёлагадоўля. Гадуюць (1999, тыс. галоў): буйн. раг. жывёлу — 510, авечак — 85, свіней, птушку. На арашальных землях вырошчваюць сеяныя травы, бульбу, цыбулю, часнок, ячмень, пшаніцу. Транспарт чыг. і аўтамабільны.

т. 11, с. 264

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКТЫНО́ІДЫ, актыніды,

сям’я з 14 хімічных радыеактыўных элементаў VII перыяду сістэмы элементаў з ат. н. 90—103: торый, пратактыній, уран, нептуній, плутоній, амерыцый, кюрый, берклій, каліфорній, эйнштэйній, фермій, мендзялевій, нобелій і лаўрэнсій. Уран, торый, менш пратактыній ёсць у прыродзе, астатнія актыноіды (наз. трансуранавыя элементы) атрыманы штучна ў выніку ядз. пераўтварэнняў. Вядучая роля ў сінтэзе і вывучэнні актыноідаў належыць Г.Сібаргу. Актыноіды — серабрыста-белыя металы высокай шчыльнасці (да 2∙10​4 кг/м³). Найб. легкаплаўкія нептуній і плутоній, tпл — 640 °C, астатнія плавяцца пры т-ры больш за 1000 °C. Актыноіды рэакцыйна-здольныя, у здробненым стане пірафорныя, лёгка рэагуюць з вадародам, кіслародам, азотам, серай, галагенамі, утвараюць комплексныя злучэнні. Блізкасць хім. уласцівасцяў актыноідаў паміж сабой і з лантаноідамі звязана з падабенствам канфігурацый вонкавых электронных абалонак іх атамаў. Практычна выкарыстоўваюцца торый, уран, плутоній; плутоній-238, кюрый-244 — у вытв-сці ядз. крыніц эл. току бартавых касм. сістэм. Некаторыя нукліды актыноідаў — у медыцыне, дэфектаскапіі, актывацыйным аналізе, нукліды урану-235, плутонію-239 — паліва ў ядз. энергетыцы, крыніца энергіі ў ядз. зброі. Актыноіды і іх злучэнні надзвычай таксічныя, што абумоўлена іх радыеактыўнасцю.

Літ.:

Сиборг Г.Т., Кац Дж.Д. Химия актинидных элементов: Пер. с англ. М., 1960;

Келлер К. Химия трансурановых элементов: Пер. с англ. М., 1976;

Лебедев Н.А., Мясоедов Б.Ф. Последние достижения в аналитической химии трансурановых элементов // Радиохимия. 1982. Т. 24, вып. 6.

т. 1, с. 213

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗАГАРТО́ЎКА,

тэрмічная апрацоўка матэрыялаў, якая робіцца іх награваннем і наступным хуткім ахаладжэннем з мэтай фіксацыі (замацавання) высокатэмпературнага стану або прадухілення (падаўлення) непажаданых працэсаў, што адбываюцца пры павольным ахаладжэнні. З. магчыма толькі для рэчываў, раўнаважны стан якіх пры высокай т-ры адрозніваецца ад раўнаважнага стану пры нізкай т-ры (крышт. структурай, канцэнтрацыяй, дэфектнасцю). У выніку З. ствараецца адносна ўстойлівы (метастабільны) стан, які пры награванні пераходзіць у больш стабільны. З. апрацоўваюць металы, іх сплавы, шкло і інш.

Найб. пашырана З. сталі. Награваннем вышэй за крытычную т-ру сталь пераводзіцца ў стан аўстэніту — цвёрдага раствору вугляроду і легіравальных элементаў у гама-жалезе, што дазваляе растварыць у аўстэніце карбіды і рэалізаваць уплыў легіравальных элементаў і вугляроду на ўласцівасці сталі. Пры ахаладжэнні з пэўнай скорасцю падаўляецца распад аўстэніту на ферытна-карбідную сумесь і адбываецца бездыфузійнае (зрухавае) пераўтварэнне аўстэніту ў мартэнсіт. Пры гэтым рэзка павялічваецца цвёрдасць, трываласць, магн. насычэнне і зніжаецца пластычнасць сталі. Пасля З. сталі абавязковы водпуск, які забяспечвае зададзенае спалучэнне цвёрдасці, трываласці, вязкасці і пластычнасці. Загартоўваюць таксама старэючыя сплавы (для атрымання перанасычанага цвёрдага раствору, які распадаецца пры старэнні з умацаваннем), вадкасці (для фіксацыі шклопадобнага стану), шкло (для зніжэння дэфектнасці і паляпшэння мех. уласцівасцей) і інш. Пры З. цвярдзеюць толькі сталі, якія загартоўваюцца на мартэнсіт; З. металічных сплаваў (старэючых, накляпаных і інш.) суправаджаецца зніжэннем цвёрдасці.

Літ.:

Курдюмов Г.В. Явления закалки и отпуска стали. М., 1960.

Г.Г.Паніч.

т. 6, с. 496

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАЛЮ́ТНЫЯ АПЕРА́ЦЫІ,

від банкаўскай дзейнасці па куплі-продажу замежнай валюты і каштоўных папер, выражаных у замежнай валюце, а таксама па ажыццяўленні інш. здзелак з валютнымі каштоўнасцямі. Уключае аперацыі, звязаныя з пераходам права ўласнасці на валютныя каштоўнасці (замежную валюту, каштоўныя паперы ў замежнай валюце, каштоўныя металы, прыродныя камяні і інш.), выкарыстаннем у якасці сродку плацяжу замежнай валюты ў знешнеэканам. дзейнасці, увозам і перасылкай валютных каштоўнасцей, ажыццяўленнем міжнар. грашовых пераводаў. Валютныя аперацыі бываюць бягучыя і звязаныя з рухам капіталу. Да бягучых адносяцца: аперацыі па куплі-продажу валютных каштоўнасцей, тавараў і паслуг, рэалізацыі права на інтэлектуальную ўласнасць, разлікі за якія ажыццяўляюцца без адтэрміноўкі плацяжу і не маюць на мэце давання і залучэння пазыковых сродкаў; пераводы сродкаў за мяжу і з-за мяжы, працэнтаў, дывідэндаў і інш. даходаў ад банкаўскіх фін. аперацый; пераводы сродкаў негандл. характару. Валютныя аперацыі, звязаныя з рухам капіталу, уключаюць: інвестыцыі, у т. л. набыццё і продаж каштоўных папер; даванне і атрыманне крэдытаў, залучэнне сродкаў і размяшчэнне іх на рахунках і ўкладах; рух капіталу ў таварнай форме па экспартна-імпартных аперацыях; фін. аперацыі, выкананне якіх праз пэўны тэрмін прадугледжвае плацяжы ці пераход права ўласнасці на валютныя каштоўнасці. Адрозніваюць валютныя аперацыі наяўныя («своп»: разлік ажыццяўляецца ў момант заключэння здзелкі ці праз мінімальна кароткі тэрмін па курсе, зафіксаваным на момант здзелкі) і тэрміновыя («форвард»: маюць на мэце плацяжы ў тэрмін і па курсе, зафіксаваным на момант здзелкі).

Г.І.Краўцова.

т. 3, с. 498

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАЛАО́ПТЫКА,

раздзел фізікі, у якім вывучаецца ўзаемадзеянне металаў з эл.-магн. хвалямі аптычнага дыяпазону. Аптычныя характарыстыкі металаў выкарыстоўваюцца ў вытв-сці метал. люстэркаў, святлодзялільных паверхняў, дыфракцыйных рашотак і інш.; метадамі М. выяўляюцца вокісныя плёнкі на паверхні металаў, вызначаюцца іх аптычныя ўласцівасці і інш.

Узаемадзеянне эл.-магн. хвалі з металам звязана з наяўнасцю ў ім электронаў праводнасці і валентных электронаў. Аптычныя ўласцівасці металаў апісваюцца камплексным паказчыкам пераламлення, які ўстанаўлівае сувязь паміж падаючай і пераломленай хвалямі праз каэфіцыент паглынання і характарызуе затуханне хвалі ўнутры металу. Значэнні каэфіцыентаў адбіцця і паглынання залежаць ад электроннай будовы металу і даўжыні падаючай хвалі. Вял. каэфіцыент адбіцця (напр., у серабра да 99%) у шырокім дыяпазоне частот абумоўлены вял. канцэнтрацыяй электронаў праводнасці. Токі праводнасці экраніруюць знешняе эл.-магн. поле і вядуць да затухання хвалі ўнутры металу (хваля затухае ў слоі металу таўшчынёй да 1 мкм). Электроны праводнасці могуць паглынаць надзвычай малыя кванты энергіі, што істотна ў радыёчастотнай і інфрачырвонай абласцях спектра. Валентныя электроны ўдзельнічаюць ва ўнутр. фотаэфекце, што вядзе да ўтварэння палос паглынання, якія назіраюцца ў бачнай і бліжэйшай ультрафіялетавай абласцях спектра. З павелічэннем частаты каэфіцыент паглынання металаў змяншаецца і, напр., у рэнтгенаўскай вобласці, дзе аптычныя ўласцівасці металаў вызначаюцца электронамі ўнутр. абалонак атамаў, металы амаль не адрозніваюцца па аптычных уласцівасцях ад дыэлектрыкаў.

Літ.:

Соколов А.В. Оптические свойства металлов. М., 1961;

Металлооптика и сверхпроводимость. М., 1988;

Степанов Б.И. Введение в современную оптику. Мн., 1989.

В.Л.Рззнікаў.

т. 10, с. 304

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)