АДНАРО́ДНАЯ ФУ́НКЦЫЯ,
функцыя адной або некалькіх пераменных, якая адпавядае ўмове: пры адначасовым множанні ўсіх пераменных на адзін і той жа адвольны лік значэнне функцыі памнажаецца на некаторую ступень гэтага ліку.
Напр.,
, дзе n — паказчык аднароднасці, або вымярэння аднароднай функцыі. Сустракаюцца ў геам. формулах. Калі
, дзе a, b, ..., 1 — даўжыні адрэзкаў, вымераных адным адвольным маштабам, то правая частка выразу павінна быць аднароднай функцыяй (вымярэнне 1, 2 або 3 у залежнасці ад таго, што вызначае x — даўжыню, плошчу або аб’ём).
т. 1, с. 123
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГЕАМЕТРЫ́ЧНАЯ ПРАГРЭ́СІЯ,
паслядоўнасць лікаў, кожны з якіх атрымліваецца з папярэдняга множаннем на пастаянны лік q≠0 (назоўнік геаметрычнай прагрэсіі). Напр., 2, 8, 32, ..., q=4. Калі q>1 (q<1), геаметрычная прагрэсія наз. нарастальнай (спадальнай), пры q<0 — знакачаргавальнай. Агульны (n-ны) член вылічаецца па формуле an=a1qn-1. Калі ўсе члены геаметрычнай прагрэсіі дадатныя, то кожны з іх (акрамя 1-га) роўны сярэдняму геаметрычнаму (адсюль назва) сваіх бліжэйшых суседзяў. Суму першых n членаў геаметрычнай прагрэсіі вылічаюць па формуле Sn=a1(1-qn)/(1-q). Бясконцая геаметрычная прагрэсія пры |q|≥1 разбягаецца.
т. 5, с. 120
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЕ́КТАРНАЯ ПРАСТО́РА ў матэматыцы, абагульненне сукупнасці вектараў трохмернай прасторы на выпадак адвольнага ліку вымярэння. Напр., n-мерная эўклідава прастора. Для элементаў вектарнай прасторы (вектараў) вызначаны аперацыі складання і множання на лік (рэчаісны ці камплексны); пры гэтым для канкрэтнай вектарнай прасторы можна дадаткова вызначыць інш. аперацыі і структуры (напр., скалярны здабытак).
Вектарная прастора наз. n-мернай (мае вымернасць n), калі ў ёй існуюць n лінейна незалежных вектараў (базіс), а любыя n+1 вектараў лінейна залежныя (для лінейнай залежнасці 2 вектараў неабходна і дастаткова іх калінеярнасці, 3 вектараў — кампланарнасці і г.д.). У бесканечнамернай вектарнай прасторы (напр., гільбертавай прасторы) любая канечная частка яе з’яўляецца лінейна незалежнай.
А.А.Гусак.
т. 4, с. 64
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АДЗІ́НКА 1) найменшы з натуральных лікаў n = 1. Пры множанні адвольнага ліку на 1 атрымліваецца той жа самы лік.
2) Элемент e мноства M наз. адзінкай, у адносінах да бінарнай алг. аперацыі *, калі для адвольнага элемента a мноства M выконваецца роўнасць a * e = a, або e * a = a (абедзве роўнасці незалежныя, г. зн., што ў агульным выпадку a * в ≠ в * a). Адрозніваюць левыя і правыя адзінкі: a * eп = a і eл * a = a. Калі на мностве M вызначана некалькі бінарных аперацый (напр., множанне і складанне лікаў), то e наз. адзінкай толькі ў адносінах да множання, у адносінах да складання — нулём.
т. 1, с. 108
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АДНАРО́ДНЫЯ КААРДЫНА́ТЫ пункта, прамой і г.д., каардынаты з уласцівасцю, што аб’ект, які яны вызначаюць, не мяняецца, калі ўсе каардынаты памножыць на адвольны лік.
Напр., аднародныя каардынаты пункта M на плоскасці могуць з’яўляцца лікі x, y, z, звязаныя суадносінамі
, дзе x і y — дэкартавы каардынаты пункта M. Лікі x′, y′, z′ будуць аднароднымі каардынатамі таго ж пункта M у выпадку, калі знойдзецца множнік λ, што , , .
Увядзенне аднародных каардынат дазваляе дадаць да пунктаў эўклідавай плоскасці пункты з трэцяй аднароднай каардынатай, роўнай нулю (т.зв.бесканечна аддаленыя пункты), што істотна для праектыўнай геаметрыі.
т. 1, с. 123
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БРЭ́ГА—ВУ́ЛЬФА ЎМО́ВА,
вызначае напрамак узнікнення максімумаў інтэнсіўнасці пры дыфракцыі рэнтгенаўскіх прамянёў на крышталях; аснова рэнтгенаўскага структурнага аналізу. Устаноўлена ў 1913 незалежна У.Л.Брэгам і Г.В.Вульфам. Паводле Брэга—Вульфа ўмовы 2dsinθ=mλ, дзе d — адлегласць паміж адбівальнымі (крышталеграфічнымі) плоскасцямі, θ — вугал паміж праменем, што падае, і адбівальнай плоскасцю (брэгаўскі вугал), λ — даўжыня хвалі выпрамянення, m — цэлы дадатны лік (парадак адбіцця). Брэга—Вульфа ўмова дае магчымасць вызначыць велічыню d (λ звычайна вядома, вугал θ вымяраецца эксперыментальна). Брэга—Вульфа ўмова выконваецца таксама пры дыфракцыі γ-выпрамянення, электронаў, нейтронаў на крышталях, эл.-магн. выпрамянення радыё- і аптычнага дыяпазонаў на перыядычных структурах, пры дыфракцыі светлавых хваляў на ультрагуку.
т. 3, с. 280
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІ́ЛЬБЕРТАВА ПРАСТО́РА,
абагульненне эўклідавай прасторы на бясконцамерны выпадак. Уведзена ў канцы 19 — пач. 20 ст. ў працах Д.Гільберта як вынік абагульнення фактаў і метадаў раскладання функцый у артаганальныя шэрагі, а таксама даследаванняў інтэгральных ураўненняў. Выкарыстоўваецца ў розных раздзелах матэматыкі, тэорыі імавернасцей, тэарэт. фізікі.
Першасна гільбертава прастора — прастора бясконцых паслядоўнасцей, напр., x = (x1, x2,..., xn, ...) са збежным шэрагам квадратаў x12 + x22 + ... + xn2 + ... . Суму двух элементаў (вектараў) паслядоўнасцей, іх скалярны здабытак і інш. вылічваюць пакаардынатна па звычайных правілах (гл. Вектарная прастора, Вектарнае злічэнне). У больш шырокім сэнсе гільбертава прастора — лінейная прастора, для якой вызначаны скалярны здабытак. У залежнасці ад вызначэння множання элементаў на сапраўдны ці камплексны лік адрозніваюць сапраўдныя і камплексныя гільбертавы прасторы.
т. 5, с. 244
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АЛГЕБРАІ́ЧНАЯ ФУ́НКЦЫЯ,
функцыя, звязаная алгебраічным ураўненнем з незалежнай пераменнай; важнейшая функцыя матэматыкі. Алгебраічная фунцыя наз. абмежаванай зверху (знізу) на мностве E, калі існуе лік M, што для кожнага x з мноства E выконваецца няроўнасць
, напр., функцыя x2 абмежаваная на адрэзку . Рацыянальная алгебраічная функцыя атрымліваецца ў выніку канечнага ліку арыфм. аперацый (складання, аднімання, множання і дзялення) над пераменнымі і лікамі, напр.,
,
; астатнія алгебраічныя функцыі — ірацыянальныя, якія звычайна неадназначныя, напр.,
,
. Агульная тэорыя алгебраічнай функцыі звязана з тэорыяй аналітычных функцый, алгебрай і алгебраічнай геаметрыяй.
т. 1, с. 235
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АСТРАЛО́ГІЯ
(ад астра... + ...логія),
вучэнне, якое сімвалічнай мовай апісвае суперпазіцыю ўплыву планет і зорак на жыццё прыроды зямлі і яе жыхароў. Зарадзілася ў глыбокай старажытнасці. Была развіта ў Стараж. Егіпце, Міжрэччы, звязана з астральнымі культамі, з яе дапамогай рабіліся прадказанні. У сярэднявеччы ўваходзіла ў лік сямі вольных навук, выкладалася ва ун-тах. У Рэчы Паспалітай кафедра астралогіі была ў Кракаўскім ун-це. Сучасная астралогія мае раздзелы: генетліялогія (вывучае ўплыў планет і інш. астралагічных аб’ектаў на характар і лёс чалавека, на дзяржавы, рэгіёны, гарады), метэаралагічная (разглядае ўплыў астралагічных аб’ектаў на надвор’е), паўсядзённая (у залежнасці ад размяшчэння астралагічных аб’ектаў вызначае найб. зручныя моманты для здзяйснення штодзённых спраў чалавека). У рамках касмабіялогіі вывучаецца сувязь Зямлі і Космасу, уплыў касмічных цыклаў на здароўе чалавека, яго біярытмічную актыўнасць.
Літ.:
Саплин А.Ю. Астрологический энциклопедический словарь. М., 1994.
А.А.Шымбалёў.
т. 2, с. 49
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АДНО́СІНЫ двух лікаў, дзель аднаго ліку на другі. Адносіны дзвюх аднародных велічынь наз. лік, які атрымліваецца ў выніку вымярэння першай велічыні, калі другая прынята за адзінку. Калі 2 велічыні вымераны з дапамогай адной і той жа адзінкі, то іх адносіны роўныя адносінам лікаў, якія іх вымяраюць. Адносіны даўжынь 2 адрэзкаў выражаюцца рацыянальным (сувымерныя адрэзкі) або ірацыянальным (несувымерныя адрэзкі) лікам. Паводле Эўкліда, 4 адрэзкі a, b, a′, b′ утвараюць прапорцыю a : b = a′ : b′, калі для адвольных натуральных лікаў m і n выконваецца адна з суадносін ma = nb, ma > nb, ma < nb адначасова з адпаведнымі суадносінамі ma′ = nb′, ma′ > nb′, ma′ < nb′. У выпадку несувымернасці a і b — разбіўка ўсіх рацыянальных лікаў х = m/n на 2 класы па прыкмеце а > xb або а < xb супадае з разбіўкай па прыкмеце a′ > xb′ або a′ < xb′, што адпавядае сутнасці ідэі сучаснай тэорыі дэдэкінда сячэнняў.
т. 1, с. 124
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)