ГА́ФНІЙ

(лац. Hafnium),

Hf, хімічны элемент IV групы перыядычнай сістэмы, ат. н. 72, ат. м. 178,49. Складаецца з 6 ізатопаў з масавымі лікамі 174, 176—180. Належыць да рассеяных элементаў, у зямной кары знаходзіцца (3—4)·10​-4% па масе. Адкрыты ў 1923 венг. хімікам Дз.Хевешы і нідэрл. фізікам Дз.Костэрам, названы па месцы адкрыцця — г. Капенгаген.

Бліскучы серабрыста-шэры пластычны метал, існуе ў 2 крышт. мадыфікацыях: гексаганальнай α-Hf і кубічнай β-Hf (вышэй за 1740 °C). Шчыльн 13 350 кг/м³, tпл каля 2230 °C. Кампактны гафній устойлівы ў паветры, парашкападобны пірафорны (гл. Пірафорныя рэчывы). Па хім. уласцівасцях падобны да цырконію. Пры т-ры вышэй за 700 °C з кіслародам утварае дыаксід HfO2, (белыя крышталі, tпл 2780 °C), пры 200—400 °C з галагенамі — тэтрагалагеніды (напр., тэтрахларыд HfCl4 — бясколерныя крышталі, т-ра вазгонкі 315 °C), пры высокіх т-рах з азотам, борам, крэмніем, вугляродам — металападобныя тугаплаўкія злучэнні (напр., нітрыд HfN — залаціста-жоўтыя крышталі, tпл 3310 °C). Злучэнні гафнію атрымліваюць пры вытв-сці цырконію з руднай сыравіны, метал. гафнію — аднаўленнем HfCl4 магніем ці кальцыем. Выкарыстоўваюць як матэрыял для рэгулюючых стрыжняў і аховы ядз. рэактараў, кампанент гарачатрывалых і тугаплаўкіх сплаваў у авіяцыі і ракетнай тэхніцы.

І.В.Боднар.

т. 5, с. 93

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВО́ЛАВА,

цына (лац. Stannum), Sn, хімічны элемент IV групы перыяд. сістэмы, ат. н. 50, ат. м. 118,710. Прыроднае волава складаецца з 10 стабільных ізатопаў: ​112Sn, ​114Sn – ​120Sn, ​122Sn, ​124Sn; найб. пашыраныя — ​120Sn (32,59%) і ​118Sn (24,22%). У зямной кары змяшчаецца 8·10​-3 % па масе. Трапляецца ў мінералах (гл. Алавяныя руды). Вядома з глыбокай старажытнасці (2-е тыс. да н.э.). Серабрыста-белы метал, мяккі і пластычны, tпл 231,91 °C, tкіп 2620 °C, паліморфны (гл. Полімарфізм); пры т-ры вышэй за 13,2 °C існуе белае волава (β-Sn, шчыльн. 7295 кг/м³), якое пры т-ры ніжэй за 13,12 °C пераходзіць у шэрае волава (α-Sn, шчыльн. 5846 кг/м³), пры гэтым метал ператвараецца ў шэры парашок. У звычайных умовах устойлівае да ўздзеяння вады і кіслароду, узаемадзейнічае з галагенамі, неарган. к-тамі, пры награванні — з дыаксідам вугляроду, неметаламі (серай, селенам, фосфарам і інш.), з растворамі шчолачаў, з металамі (кальцыем, магніем, тытанам і інш.) утварае інтэрметал. злучэнні (гл. Волава злучэнні). Атрымліваюць з алавяных руд і рэгенерацыяй адходаў. Выкарыстоўваюць як кампанент сплаваў бронза, латунь, бабіт (гл. Волава сплавы), для аховы металаў ад карозіі (луджэнне).

І.В.Боднар.

т. 4, с. 259

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВУГЛЯРО́Д

(лац. Carboneum),

C, хімічны элемент IV групы перыяд. сістэмы, ат. н. 6, ат. м. 12,011. Складаецца з 2 стабільных ізатопаў ​12C (98,892%) і ​13C (1,108%). Ізатопам ​12C карыстаюцца для вызначэння атамнай адзінкі масы. У верхніх слаях атмасферы ўтвараецца радыеактыўны ізатоп ​14C. У зямной кары ў выглядзе мінералаў і гаручых выкапняў знаходзіцца 2,3·10% вугляроду па масе, у атмасферы ў выглядзе вугляроду дыаксіду — 1,2·10​-2%. Вельмі шмат вугляроду ў космасе; на Сонцы па распаўсюджанасці займае 4-е месца пасля вадароду, гелію, кіслароду. Злучэнні вугляроду — асн. састаўная частка тканак раслін і жывёл (гл. Біягены).

Існуюць 2 крышт. мадыфікацыі вугляроду (алмаз, графіт, 3-я — карбін — атрымана штучна) і аморфны (кокс, сажа, драўняны вугаль). Пры звычайных т-рах хімічна інертны, пры высокіх — рэагуе з многімі элементамі: з металамі і некаторымі неметаламі (напр., бор, крэмній) утварае карбіды. Аморфны вуглярод хімічна больш актыўны (моцны аднаўляльнік). Атамы вугляроду здольныя злучацца адзін з адным і ўтвараюць вял. колькасць злучэнняў, якія вывучае арганічная хімія.

Выкарыстоўваюць у вытв-сці алмазных інструментаў (гл. таксама Алмазная прамысловасць), вогнетрывалых матэрыялаў, эл.-тэхн. вырабаў, у ядз. тэхніцы, гумавай, паліграф., лакафарбавай прам-сці, металургіі.

К.Л.Майсяйчук.

т. 4, с. 286

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗО́ЛАТА

(Aurum),

Au, хімічны элемент I групы перыяд. сістэмы, ат. н. 79, ат. м. 196,9665, адносіцца да высакародных металаў. У прыродзе 1 стабільны ізатоп ​197Au. У зямной кары 4,3·10​-7% па масе. Гал. з мінералаў — золата самароднае. Вядома з глыбокай старажытнасці.

Жоўты мяккі і вельмі пластычны метал, tпл 1064,4 °C, tкіп 2880 °C, шчыльн. 19320 кг/м3. Хімічна даволі інертнае, устойлівае ў паветры і вадзе; з кіслародам, азотам, вадародам, вугляродам непасрэдна не ўзаемадзейнічае. Узаемадзейнічае з галагенамі пры награванні (напр., з хлорам пры 250 °C утварае хларыд AuCl3 — рубінава-чырвонае крышт. рэчыва, раскладаецца пры t >254 °C); гарачай селенавай к-той; сумесямі кіслот сернай і азотнай, азотнай і салянай (царская гарэлка); воднымі растворамі цыянідаў у прысутнасці кіслароду (гл. Цыяніраванне). Лёгка ўтварае амальгаму, на гэтым заснаваны адзін з метадаў вылучэння з горных парод (гл. Амальгамацыя). Дае з інш. металамі (медзь, серабро, плаціна) сплавы, больш трывалыя і цвёрдыя за З. чыстае. Выкарыстоўваюць З. і яго сплавы ў электроннай прам-сці (кантакты); у вытв-сці хімічна ўстойлівай апаратуры, прыпояў, каталізатараў, гадзіннікаў; для залачэння, афарбоўкі шкла; для вырабу зубных пратэзаў, ювелірных вырабаў, манет, медалёў (колькасць З. ў іх паказвае проба; гл. Проба высакародных металаў).

Літ.:

Баукова Т.В., Леменовский Д.А. Золото в химии и медицине. М., 1991.

І.В.Боднар.

т. 7, с. 104

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСТРАФІ́ЗІКА,

раздзел астраноміі, які вывучае фізічную будову, хімічны састаў і развіццё нябесных целаў. Узнікла ў сярэдзіне 19 ст. ў выніку выкарыстання ў астраноміі спектральнага аналізу, фатаграфіі і фотаметрыі, што дало магчымасць вызначаць т-ру атмасфер Сонца і зорак, іх магнітныя палі, скорасць руху ўздоўж праменя зроку, характар вярчэння зорак і інш. Асн. раздзелы астрафізікі: фізіка Сонца, фізіка зорных атмасфер і газавых туманнасцяў, тэорыя ўнутранай будовы і эвалюцыі зорак, фізіка планет і інш. Тэарэтычная астрафізіка вывучае асобныя нябесныя аб’екты (планеты, зоркі, пульсары, квазары, галактыкі, скопішчы галактык і інш.) і агульныя фіз. прынцыпы астрафіз. працэсаў з мэтай устанаўлення агульных законаў развіцця матэрыі ў Сусвеце. Практычная астрафізіка распрацоўвае інструменты, прылады і метады даследаванняў. Крыніцы атрымання інфармацыі пра нябесныя целы: эл.-магн. выпрамяненне (гама-, рэнтгенаўскае, ультрафіялетавае, бачнае, інфрачырвонае і радыёвыпрамяненне); касм. прамяні, якія дасягаюць атмасферы Зямлі і ўзаемадзейнічаюць з ёю; нейтрына і антынейтрына; гравітацыйныя хвалі, што ўзнікаюць пры выбухах масіўных зорак. Значны ўклад у развіццё Астрафізікі зрабілі А.А.Белапольскі, М.М.Гусеў, Ф.А.Брадзіхін, В.Я.Струвэ, Г.А.Ціхаў (Расія), Г.Фогель, К.Шварцшыльд (Германія), У.Кэмпбел, Э.Пікерынг, Э.Хабл (ЗША), А.Эдынгтан (Англія), В.А.Амбарцумян (СССР) і інш. Найб. значныя дасягненні сучаснай Астрафізікі — адкрыццё нябесных аб’ектаў з незвычайнымі фіз. ўласцівасцямі (нейтронныя зоркі, чорныя дзіркі, квазары).

Літ.:

Мартынов Д.Я. Курс обшей астрофизики. 4 изд. М., 1988;

Шкловский И.С. Звезды: их рождение, жизнь и смерть. 3 изд. М., 1984.

Ю.М.Гнедзін.

т. 2, с. 53

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БОР

(лац. Borum),

B, хімічны элемент III групы перыяд. сістэмы Мендзялеева. Ат.н. 5, ат.м. 10,81. Прыродны бор складаецца з двух стабільных ізатопаў ​10B (19,57%) і ​11B (80,43%), існуе як мінерал буракс, керніт, ашарыт і інш.; у зямной кары ёсць 5·10​-3%, у вадзе акіянаў 4,6 мг/л. Атрыманы ў 1808 Л.Ж.Гей-Люсакам і Л.Ж.Тэнарам.

Вядома больш за 10 алатропных мадыфікацый бора. Бывае бясколерным, шэрым ці чырвоным крышталічным або цёмным аморфным рэчывам і мае розныя фіз.-хім. характарыстыкі. Па цвёрдасці (па Маосу 9,3, па Вікерсу 274,4 ГПа) займае другое (пасля алмазу) месца сярод рэчываў. Вельмі крохкі; у пластычны стан пераходзіць пры т-ры вышэй за 2000 °C. Хімічна дастаткова інертны, не рэагуе з вадародам (боравадароды атрымліваюцца ўскосным шляхам); з іншымі рэчывамі рэагуе толькі пры высокіх т-рах: акісляецца на паветры пры 700 °C, з азотам пры 1200—2000 °C утварае нітрыд бору, з вугляродам пры 1300 °C і вышэй — карбіды, з большасцю металаў — барыды, пры сплаўленні са шчолачамі — бараты; царская гарэлка і азотная кіслата акісляюць бор да борнай кіслаты (гл. таксама Бору злучэнні). Атрымліваюць з буры і керніту, аднаўленнем аксіду ці галагенідаў бору, раскладаннем галагенідаў і гідрыдаў. Выкарыстоўваюць як кампанент каразійнаўстойлівых гарачатрывалых сплаваў, кампазіцыйных матэрыялаў, сплаваў для рэгулявальных прыстасаванняў адз. рэактараў і лічыльнікаў нейтронаў, як паўправадніковы матэрыял і для барыравання.

Л.М.Скрыпнічэнка.

т. 3, с. 215

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЛІЙ

(лац. Gallium),

Ga, хімічны элемент III групы перыядычнай сістэмы, ат. н. 31, ат. м. 69,72. Прыродны складаецца з 2 стабільных ізатопаў ​69Ga (61,2%) і ​71Ga (38,8%). У зямной кары 1,8·10​-3 % па масе. У прыродзе рассеяны (мінерал галіт CuGaS2 вельмі рэдкі), спадарожнік алюмінію. Адкрыты ў 1875 франц. хімікам П.Э.Лекокам дэ Буабадранам, названы ў гонар Францыі (лац. Gallia).

Светла-шэры легкаплаўкі (tпл 29,76 °C) метал з вял. тэмпературным інтэрвалам існавання ў вадкім стане (tкіп 2205 °C), шчыльн. (кг/м³) цвёрдага 5903,7 (29,6 °C), вадкага 6094,8 (пры зацвярдзенні аб’ём галію павялічваецца). У паветры пры звычайнай т-ры пакрыты ахоўнай плёнкай аксіду. Раствараецца ў мінер. к-тах і шчолачах, утварае адпаведна солі галію і галаты — солі ортагаліевай Ga(OH3) ці H3GaO3 і метагаліевай HGaO2 к-т. Найб. пашыраны солі галію: трыхларыд GaCl3, бясколерныя крышталі, tпл 77,8 °C; сульфат Ga2(SO4)3, які з сульфатамі шчолачных металаў і амонію ўтварае галын. Пры сплаўленні з фосфарам, мыш’яком і сурмой галій утварае крышт. паўправадніковыя злучэнні, адпаведна фасфід GaP (жоўта-аранжавы, tпл 1790 °C), арсенід GaAs (цёмна-шэры з фіялетавым адценнем, tпл 1238 °C), антыманід GaSb (светла-шэры, tпл 712 °C).

Выкарыстоўваюць у вытв-сці паўправадніковых матэрыялаў, для «халоднай пайкі» керамічных і металічных дэталей у радыёэлектроніцы, люстраў з высокай адбівальнай здольнасцю, высокатэмпературных (900—1600 °C) тэрмометраў, манометраў.

І.В.Боднар.

т. 4, с. 460

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕ́ЛІЙ

(лац. Helium),

Не, хімічны элемент VII групы перыядычнай сістэмы, ат. н. 2, ат. м. 4,0026. Прыродны гелій складаецца з 2 стабільных ізатопаў ​4He (99,999862%) і ​3He. Належыць да інертных газаў. Адзін з найб. пашыраных элементаў космасу (2-і пасля вадароду). Адкрыты ў 1868 астраномамі Ж.Жансэнам і Н.Лок’ерам у спектры сонечнай кароны (назва ад грэч. helios — Сонца). У атмасферы 5,27·10​-4% па аб’ёме (​4He утвараецца пры α-распадзе радыенуклідаў торыю, урану і інш. элементаў). Ядры ​4He — альфа-часціцы. Гелій маюць некат. прыродныя газы (да 2% па аб’ёме) і мінералы. Вылучаны ў 1895 У.Рамзаем з мінералу клевеіту.

Аднаатамны газ без колеру і паху, tкіп -268,39 °C (самая нізкая сярод вадкасцей), шчыльн. 0,17847 кг/м³ (0 °C). Адзіны элемент, які не цвярдзее пры нармальным ціску нават пры т-ры, блізкай да 0 К, tпл -271,25 °C (ціск 3,76 МПа). Горш за інш. газы раствараецца ў вадзе, характарызуецца выключнай хім. інертнасцю. У прам-сці атрымліваюць з газаў прыродных гаручых метадам глыбокага ахаладжэння. Выкарыстоўваюць пры зварцы, рэзцы металаў, перапампоўванні ракетнага паліва, у вытв-сці цеплавыдзяляльных элементаў, паўправадніковых матэрыялаў (у якасці ахоўнага асяроддзя), у аэранаўтыцы, для кансервацыі харч. прадуктаў і інш. Гелій вадкі — квантавая вадкасць. Пры т-ры 2,17 К (-270,98 °C) і ціску пары 0,005 МПа (т.зв. λ-пункт) у вадкім ​4He (бозэ-вадкасць) адбываецца фазавы пераход другога роду (ад He I да He II). He I бурна кіпіць ва ўсім аб’ёме, He II — спакойная вадкасць, якой уласціва звышцякучасць. Выкарыстоўваюць у крыягеннай тэхніцы як холадагент, вадкі ​3He — адзінае рэчыва для вымярэння т-ры ніжэй за 1 К.

В.Р.Собаль.

т. 5, с. 140

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАДАРО́Д,

гідраген (лац. Hydrogenium), H, хімічны элемент VII групы перыяд. сістэмы, ат. н. 1, ат. м. 1,00794. Прыродны вадарод складаецца з 2 ізатопаў ​1H (протый, 99,98% па масе) і ​2H ці Д (дэйтэрый, 0,02%), атрыманы штучныя радыеактыўныя ​3H ці Т (трытый) і вельмі няўстойлівы ​4H. У паветры колькасць вадароду 3,5·10​-6% па масе, у літасферы і гідрасферы — 1%, у вадзе — 11,19%, у складзе арганічных злучэнняў вадароду маюць усе раслінныя і жывёльныя арганізмы. Самы пашыраны элемент у космасе, складае каля палавіны масы Сонца, большасці зорак. Газ без колеру і паху, tпл -259,1 °C, tкіп -252,6 °C, шчыльн. вадкага 70,8 кг/м³ (-235 °C). Вадарод і яго сумесі з паветрам і кіслародам (гл. Грымучы газ) пажара- і выбухованебяспечныя.

Малекула вадароду двухатамная. Пры звычайных умовах узаемадзейнічае толькі з фторам і хлорам (на святле), пры павышаных т-рах у прысутнасці каталізатараў — з кіслародам (гл. Вада), галагенамі (гл. Галагенавадароды), азотам (гл. Аміяк). Са шчолачнымі і шчолачназямельнымі металамі, элементамі III—IV груп перыяд. сістэмы ўтварае гідрыды. Аднаўляе аксіды і галагеніды металаў да металаў, ненасычаныя вуглевадароды (гл. Гідрагенізацыя). Лёгка аддае электрон, у водных растворах пратон H​+ існуе ў выглядзе іона гідраксонію, утварае вадародную сувязь. У прам-сці атрымліваюць канверсіяй метану: CH4 + 2H2O = 4H2 + CO2; пры газіфікацыі вадкага і цвёрдага паліва (гл. Вадзяны газ).

Газападобны вадарод выкарыстоўваюць для сінтэзу аміяку, хлорыстага вадароду, метылавага і вышэйшых спіртоў, вуглевадародаў, для гідрагенізацыі тлушчу, таксама для зваркі і рэзкі металаў вадародна-кіслародным полымем, вадкі — як гаручае ў ракетнай і касм. тэхніцы, ізатопы — у атамнай энергетыцы.

І.В.Боднар.

т. 3, с. 434

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАЛІТЫ́ЧНАЯ ХІ́МІЯ,

навука аб прынцыпах і метадах вывучэння саставу рэчываў. Уключае тэарэт. асновы хім. аналізу, метады вызначэння кампанентаў у рэчывах ці матэрыялах, сістэм. аналіз канкрэтных аб’ектаў. Тэарэт. асновы аналітычнай хіміі — метралогія хім. Аналізу (апрацоўка вынікаў); вучэнне аб адборы і падрыхтоўцы аналітычных проб, складанні схемы і выбары метадаў, прынцыпах і шляхах аўтаматызацыі аналізу. Аналітычная хімія звязана з дасягненнямі фізікі, матэматыкі, біялогіі, розных галін тэхнікі. Асаблівасць аналітычнай хіміі — вывучэнне індывід. спецыфічных уласцівасцяў і характарыстык аб’ектаў. У залежнасці ад мэты аналізу адрозніваюць якасны аналіз і колькасны аналіз; у залежнасці ад кампанентаў, якія неабходна выявіць — ізатопны аналіз, элементны аналіз, структурна-групавы (у т. л. функцыянальны аналіз), малекулярны і фазавы аналіз; у залежнасці ад прыроды рэчыва — аналіз арган. і неарган. рэчываў. Вызначэнне рэчыва ці кампанента праводзяць хімічнымі (гравіметрычны аналіз, цітрыметрычны аналіз), фізіка-хімічнымі (электрахім., фотаметрычны аналіз, кінетычныя метады аналізу), фізічнымі (спектральныя, ядзерна-фіз. і інш.) і біял. метадамі аналізу. Практычна ўсе метады аналітычнай хіміі заснаваны на залежнасці ўласцівасцяў аб’ектаў, якія можна мераць (маса, аб’ём, святлопаглынанне, эл. ток і інш.), ад іх саставу.

Заснавальнікам аналітычнай хіміі як навукі лічыцца Р.Бойль, які ўвёў паняцце «хімічны аналіз». Класічная аналітычная хімія (17—18 ст.) выкарыстоўвала пераважна гравіметрычны і цітрыметрычны метады аналізу. Да 1-й пал. 19 ст. адкрыты многія хім. элементы, выдзелены састаўныя часткі некаторых прыродных рэчываў, устаноўлены пастаянства саставу закон, кратных адносін закон, масы захавання закон. Распрацаваны сістэматычны аналіз (ням. хімікі Г.Розе, К.Фрэзеніус і рус. хімік М.А.Мяншуткін), створаны цітрыметрычны аналіз арган. злучэнняў (ням. хімік Ю.Лібіх). У канцы 19 ст. складалася тэорыя аналітычнай хіміі, заснаваная на вучэнні аб хім. раўнавазе ў растворах з удзелам іонаў (у асн. В.Оствальд). У 20 ст. з’явіліся метады мікрааналізу арган. злучэнняў (аўстр. хімік Ф.Прэгль), паляраграфіі (чэшскі хімік Я.Гейраўскі), рус. біяхімікам М.С.Цветам адкрыты метад храматаграфіі (1903) і створаны яго варыянты. Развіццё сучаснай аналітычнай хіміі звязана са з’яўленнем мноства фізіка-хім. і фіз. метадаў аналізу (мас-спектраметрычны, рэнтгенаўскі, ядзерна-фізічныя). Прапанаваны плазмавыя крыніцы току для атамна-эмісійнага аналізу, распрацаваны метады фотаметрычнага аналізу, атамна-адсарбцыйнай спектраскапіі. У сувязі з неабходнасцю аналізу ядз., паўправадніковых і інш. матэрыялаў высокай чысціні створаны радыеактывацыйны аналіз, хіміка-спектральны, іскравая мас-спектраметрыя, вольтамперметрыя — метады, што дазваляюць вызначыць дамешкі ў чыстых рэчывах з канцэнтрацыяй да 10​-7—10​-8%. Распрацаваны метады неперарыўнага і дыстанцыйнага аналізу. Перавага аддаецца метадам неразбуральнага кантролю, лакальнага аналізу (рэнтгенаспектральны мікрааналіз, мас-спектраметрыя другасных іонаў і інш.). Лакальным аналізам карыстаюцца пры аналізе паверхневых слаёў цвёрдых матэрыялаў ці ўключэнняў горных парод.

Сучасная аналітычная хімія карыстаецца аўтам. ці аўтаматызаванымі варыянтамі вызначэння рэчываў. Метады аналітычнай хіміі дазваляюць кантраляваць тэхнал. працэсы і якасць прадукцыі ў многіх галінах вытв-сці, праводзіць пошук і разведку карысных выкапняў. Аналітычная хімія садзейнічала развіццю ат. энергетыкі, электронікі, акіяналогіі, біялогіі, медыцыны, крыміналістыкі, археалогіі, касм. даследаванняў. На Беларусі сістэм. даследаванні па аналітычнай хіміі пачаліся ў 1935 у БДУ і вядуцца ў ін-тах фіз., хім. і геал. профілю АН, у ВНУ і ведамасных н.-д. установах. Распрацаваны шэраг храматаграфічных метадаў, выдзялення з сумесяў і вызначэння іонаў, комплексаў металаў, алкалоідаў і інш. рэчываў (пад кіраўніцтвам Р.Л.Старобінца); хім. метадаў вызначэння металаў (В.Р.Скараход); даследаваны ўплыў экстракцыйных працэсаў розных тыпаў на функцыянаванне вадкасных і плёначных іонаселектыўных электродаў на аснове вышэйшых чацвярцічных амоніевых соляў (Я.М.Рахманько) і сульфакіслот (У.У.Ягораў). Распрацаваны і ўкаранёны: аніён- і катыёнселектыўныя электроды; нітратамер і іонамер; методыкі вызначэння нітратаў, свінцу, кадмію, вісмуту, ртуці, цынку, алкалоідаў, алкілсульфатаў і інш., газахраматаграфічнага вызначэння фенолаў, пестыцыдаў у вадзе, прадуктах харчавання; экстракцыйна-спектральныя і храматаграфічныя метады аналізу с.-г. аб’ектаў; метады аналізу паўправадніковых матэрыялаў, сплаваў, плёнак, ферытаў.

Літ.:

Золотов Ю.А. Аналитическая химия: Проблемы и достижения. М., 1992.

т. 1, с. 335

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)