ДАСКАНА́ЛЫ ЛІК,

цэлы дадатны лік, роўны суме сваіх правільных (меншых за гэты лік) дзельнікаў. Напр., 6 =1+2+3; 28 = 1+2+4+7+14. Цотныя Д.л. вылічваюцца па формуле 2​p−1∙(2​p−1) (Эўклід; 3 ст. да н.э.) пры ўмове, што лікі р і (2​p-1) простыя; ніводнага няцотнага Д.л. не знойдзена.

т. 6, с. 60

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЛГЕБРАІ́ЧНЫ ЛІК,

корань мнагаскладу P(x) = an xn + ... + a1x + a0 з рацыянальнымі каэфіцыентамі an, з якіх не ўсе роўныя 0; у агульным выпадку можа быць камплексным лікам. Г.Кантар (1872) паказаў, што мноства ўсіх алгебраічных лікаў злічонае і таму існуюць неалг. лікі (гл. Трансцэндэнтны лік), напр., 2, π і інш. Мноства ўсіх алгебраічных лікаў — алгебраічна замкнёнае поле (напр., адвольны корань мнагаскладу з алг. каэфіцыентамі таксама алгебраічны лік).

В.І.Бернік.

т. 1, с. 235

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІПЕРКАМПЛЕ́КСНЫ ЛІК,

абагульненне паняцця комплекснага ліку і пашырэнне яго на мнагамерную прастору. Уведзены ў 19 ст. пры спробах пабудаваць лікі ў мнагамернай вектарнай прасторы, якія б адыгрывалі ў ёй такую ж ролю, што і камплексныя лікі на плоскасці. Арыфм. дзеянні над гіперкамплексным лікам выражаюць некаторыя геам. працэсы ў мнагамернай прасторы ці даюць колькаснае апісанне якога-н. фіз. закона.

Гіперкамплексны лік з’яўляецца лінейнай камбінацыяй (з сапраўднымі каэфіцыентамі) некат. сістэмы базісных адзінак (гл. Базіс). Складанне і адыманне гіперкамплекснага ліку вызначана адназначна. Множанне аднаго гіперкамплекснага ліку на другі патрабуе вызначэння здабыткаў базісных адзінак, якія б захоўвалі ўсе правілы звычайнай арыфметыкі; такое магчыма толькі для сапраўдных і камплексных лікаў; у астатніх выпадках неабходна адмовіцца ад выканання таго ці іншага правіла, напр. адназначнасці дзялення, камутатыўнасці множання. Гл. таксама Кватэрніёны.

т. 5, с. 256

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

Рэйнальдса лік магнітны

т. 13, с. 565

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ко́лер,

спецыфічны квантавы лік.

т. 8, с. 389

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДЗЕСЯТКО́ВЫ ЛАГАРЫ́ФМ ліку, паказчык ступені, у якую патрэбна ўзвесці лік 10, каб атрымаць зададзены лік; лагарыфм па аснове 10. Дл. ліку Ν абазначаецца lg N; напр., lg 2 = 0,3010, lg 20 = 1,3010, lg 100 = 2.

т. 6, с. 107

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГО́ЛЬДБАХА ПРАБЛЕ́МА,

праблема тэорыі лікаў, паводле якой кожны цотны лік, большы за 4, можна запісаць у выглядзе сумы двух простых лікаў (бінарная Гольдбаха праблема), а няцотны лік, большы за 5, — у выглядзе сумы трох простых лікаў (тэрнарная Гольдбаха праблема). Выказана акад. Пецярбургскай АН К.Гольдбахам (1742). У 1930 Л.Г.Шнірэльман даказаў тэарэму, што любы цэлы лік ёсць сума абмежаванай колькасці простых лікаў. Тэрнарную Гольдбаха праблему даказаў у 1937 І.М.Вінаградаў; бінарная Гольдбаха праблема не даказана.

В.І.Бернік.

т. 5, с. 328

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЛЬЁН

(франц. billion),

тое, што і мільярд (10​9). У некаторых дзяржавах (напр., Англіі, Германіі) більён — лік 10​12 (мільён мільёнаў).

т. 3, с. 153

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІНАМІЯ́ЛЬНЫЯ КАЭФІЦЫЕ́НТЫ , каэфіцыенты ў формуле раскладання Ньютана бінома па ступенях незалежнай пераменнай. Абазначаюцца Cmn і вызначаюцца па формуле Cmn = n (n 1)  ...  (n m + 1) m! , дзе n — ступень бінома (любы сапраўдны або камплексны лік; гл. Бінаміяльны шэраг), m — ступень незалежнай пераменнай ( 0 m n ) . Калі n — цэлы лік, то Cmn = n! m (n m) ! .

т. 3, с. 154

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗДАБЫВА́ННЕ КО́РАНЯ,

алгебраічнае дзеянне, адваротнае ўзвядзенню ў ступень.

Здабыць корань n-й ступені з ліку a — значыць знайсці такі лік (корань) x, n-я ступень якога роўна a. Матэм. запіс x = a . Задача З.к. n-й ступені з ліку a раўнасільная рашэнню ўраўнення xn a = 0 , якое мае роўна n каранёў. Калі a — сапраўдны дадатны лік, то 1 з каранёў таксама будзе сапраўдным дадатным лікам (арыфм. корань); пад задачай З.к. часта разумеюць знаходжанне менавіта арыфм. кораня. Напр. 81 4 = +3 (арыфм. корань 3), таму што (±3) 4 = 81 ; сярод уяўных лікаў (гл. Камплексны лік) ёсць яшчэ 2 карані: 81 4 = ±3i .

т. 7, с. 47

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)