від электрамагніта ці саленоіда, абмоткі якіх зроблены са звышправоднага матэрыялу (гл.Звышправаднікі). Пры кароткім замыканні такой абмоткі наведзены ў ёй эл. ток захоўваецца практычна бясконца доўга.
Магн. поле незатухальнага току, які цыркулюе па абмотцы З.м., выключна стабільнае і пазбаўлена пульсацый. Абмотка З.м. траціць уласцівасці звышправоднасці пры павелічэнні т-ры вышэй за крытычную або пры дасягненні крытычнага току ці крытычнага магнітнага поля. Таму абмоткі З.м. робяць з матэрыялу з вял. крытычнымі значэннямі гэтых параметраў (сплавы ніобій—цырконій Nb—Zr. ніобій—тытан Nb—Ti; злучэнні ніобію з волавам Nb3Sn, ванадыю з галіем V3Ga і інш.). З.м. выкарыстоўваюцца для даследавання магн., эл. і аптычных уласцівасцей матэрыялаў, у эксперыментах па вывучэнні плазмы, атамных ядраў і элементарных часціц, у тэхніцы сувязі, радыёлакацыі і інш.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІПЕР’Я́ДРЫ ў фізіцы, ядрападобныя сістэмы, якія складаюцца з нуклонаў (пратонаў і нейтронаў) і аднаго або некалькіх гіперонаў (Λ, Σ і інш.). Утвараюцца пры ўзаемадзеянні часціц высокіх энергій з нуклонамі ядраў або пры захопе ядром павольнага K−-мезона; выяўляюцца па прадуктах распаду. Вывучэнне ўласцівасцей гіпер’ядраў з’яўляецца адным з найб. важных кірункаў ядз. фізікі, дазваляе высветліць сувязі паміж фундаментальнымі барыён-барыённымі ўзаемадзеяннямі і ядз. структурай.
Λ-гіпер’ядры адкрыты эксперыментальна ў 1953 польскімі вучонымі М.Данышам і Е.Пнеўскім; у 1963 выяўлены гіпер’ядры з двума Λ-гіперонамі (падвойныя гіпер’ядры), у 1979 — Σ-гіпер’ядры. Большасць уласцівасцей гіпер’ядраў эксперыментальна вызначана пры ўзаемадзеянні K−-мезонаў з ядром: гіпер’ядры маюць ненулявую дзіўнасць; іх структура вызначаецца моцным узаемадзеяннем нуклонаў і гіперонаў, час жыцця гіпер’ядраў — часам жыцця гіперона; большасць гіпер’ядраў могуць знаходзіцца ў некалькіх станах (асн. і ўзбуджаным) з пэўнымі значэннямі поўнага вуглавога моманту і цотнасці.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МАГНІ́ТНАЕ АХАЛАДЖЭ́ННЕ,
метад атрымання тэмператур, ніжэйшых за 1 К, шляхам адыябатнага размагнічвання парамагнітных рэчываў (гл.Адыябатны працэс, Парамагнетызм). Прапанаваны П.Дэбаем і У.Ф.Джыёкам; здзейснены ў 1933.
Пры М.а. парамагнітны ўзор, ахалоджаны вадкім геліем, намагнічваюць у магутным мага. полі, пасля выключэння якога ўзор размагнічваецца з прычыны цеплавога руху атамаў, і яго т-ра ва ўмовах цеплаізаляцыі зніжаецца (гл.Магнетакаларычны эфект). Для атрымання т-р ∼10−3 К выкарыстоўваюць солі рэдказямельных элементаў (напр., сульфат гадалінію), а таксама інш. парамагнітныя рэчывы (напр., хрома-каліевы і жалеза-каліевы галын), у крышт. рашотцы якіх знаходзяцца іоны з недабудаванымі электроннымі абалонкамі і адрозным ад нуля ўласным магн. момантам (Fe+3, Cr+3, Gd+3). Пры выкарыстанні парамагнетызму атамных ядраў (напр., ва ўзоры медзі) атрымліваюць т-ры да 10−6 К. М.а. шырока выкарыстоўваецца ў навук. даследаваннях пры вывучэнні звышцякучасці і звышправоднасці.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МАГНІ́ТНЫ РЭЗАНА́НС,
выбіральнае паглынанне рэчывам эл.-магн. хваль пэўнай частаты, абумоўленае зменай арыентацыі магнітных момантаў часціц рэчыва (электронаў, атамных ядраў).
Энергет. ўзроўні часціцы, якая мае магнітны момант, у знешнім магн. полі расшчапляюцца на магн. падузроўні, кожнаму з якіх адпавядае пэўная арыентацыя магн. моманту адносна поля (гл.Зеемана з’ява). Эл.-магн. поле рэзананснай частаты выклікае квантавы пераход паміж магн. падузроўнямі. Пры паглынанні энергіі ядрамі атамаў назіраецца ядзерны магнітны рэзананс; у парамагнетыках паглынанне энергіі абумоўлена магн. момантамі няспараных электронаў — электронны парамагнітны рэзананс; у магнітаўпарадкаваных рэчывах адрозніваюць ферамагнітны рэзананс, антыферамагнітны рэзананс, ферымагнітны рэзананс. Выкарыстоўваецца для даследавання ўнутр. структуры цвёрдых цел і вадкасцей, для неразбуральнага хім. аналізу, прэцызійных метадаў вымярэння і стабілізацыі магн. палёў, у ферытавых прыладах ЗВЧ, мазерах і інш.
Літ.:
Сликтер Ч.П. Основы теории магнитного резонанса: Пер. с англ. 2 изд. М., 1981.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МА́ЙТНЕР, Мейтнер (Meitner) Ліэе (7.11.1878, Вена — 27.10.1968), аўстрыйска-шведскі фізік, адна з пачынальнікаў даследавання радыеактыўнасці. Скончыла Венскі ун-т (1905). У 1917—38 у Ін-це хіміі кайзера Вільгельма, адначасова з 1922 у Берлінскім ун-це (з 1926 праф.). З 1938 у Швецыі ў Нобелеўскім ін-це, з 1947 у Вышэйшай тэхн. школе ў Стакгольме. З 1960 жыла ў Англіі. Навук. працы па ядз. фізіцы і радыяхіміі. Адкрыла радыеактыўны элемент пратактыній (1917, разам з О.Ганам). Растлумачыла дзяленнем (тэрмін прапанаваны М.) ядраў урану вынікі доследаў Гана і Ф.Штрасмана па бамбардзіроўцы урану нейтронамі (1939, разам з О.Фрышам), прадказала ланцуговую ядз. рэакцыю. У яе гонар па рэкамендацыі Міжнар. саюза тэарэт. і прыкладной хіміі (1997) названы хім. элемент майтнерый. Прэмія імя Э.Фермі 1966 (разам з Ганам, Штрасманам).
Літ.:
Льоцци М. История физики: Пер. с итал. М., 1970. С. 440.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АРСЕНА́Л (франц. arsenal),
установа для захоўвання ваеннай зброі і боепрыпасаў. Узніклі ў 16 ст. Да канца 19 ст. займаліся таксама вырабам, рамонтам і зборкай узбраення і боепрыпасаў. У Расіі гал. арсеналы былі ў Маскве, Пецярбургу, у Англіі — у Вуліджы, у Францыі — у Ліёне, у Германіі — у Мюнхене, у Італіі — у Турыне, у ЗША — у Спрынгфілдзе. У 20 ст., калі вытв-сць зброі была вылучана ў самастойную галіну прам-сці, арсеналы сталі выконваць функцыі базаў і складоў рознага прызначэння. У Францыі і ЗША арсеналамі наз. некаторыя суднабуд. заводы.
На Беларусі арсеналы (цэйхгаузы) будавалі ў вял. замках, абарончых вузлах гарадоў, сядзібна-палацавых комплексах. У мураваных або драўляных 1- або 2-павярховых будынках вылучаліся памяшканні, дзе захоўваліся гарматы, ручныя стрэльбы, халодная зброя, запасы пораху, ядраў, куль і інш. У 17—18 ст. арсеналы існавалі ў Слуцку, Крычаве, Бабруйску і інш. гарадах, у 19 ст. — у Бабруйскай і Брэсцкай крэпасцях.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АРАМАТЫ́ЧНЫЯ ЗЛУЧЭ́ННІ,
цыклічныя арган. злучэнні, атамы якіх ствараюць адзіную спалучаную (араматычную) сістэму сувязяў. Назва ад прыемнага паху першых адкрытых такіх злучэнняў.
У вузкім сэнсе да араматычных злучэнняў адносяць толькі бензольныя злучэнні: араматычныя вуглевадароды (арэны), напр. бензол, талуол, стырол, бі-, тры- і поліцыклічныя злучэнні, пабудаваныя з бензольных ядраў, напр. нафталін, антрацэн, і іх вытворныя (галагензмяшчальныя, аміны, нітразлучэнні, фенолы і інш.). Фіз. і хім. асаблівасці араматычных злучэнняў звязаны з існаваннем у іх замкнёнай электроннай абалонкі з π-электронаў. У параўнанні з ненасычанымі злучэннямі яны больш устойлівыя, удзельнічаюць пераважна ў рэакцыях замяшчэння і захоўваюць араматычную сістэму сувязяў. У шырокім сэнсе да араматычных злучэнняў адносяць таксама гетэрацыклічныя электронныя аналагі бензолу (пірыдзін, пірол, фуран, тыяфен), небензоідныя злучэнні тыпу азуленаў, баразолу, ферацэну і інш.Асн. крыніца араматычных злучэнняў — прадукты каксавання каменнага вугалю, перапрацоўкі нафты (гл.Араматызацыя). Араматычныя злучэнні — прадукты прамысл.арган. сінтэзу (палімеры, фарбавальнікі, лекавыя сродкі, выбуховыя рэчывы).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ІЗАТО́ПЫ (ад іза... + грэч. topos месца),
разнавіднасці атамаў пэўнага хім. элемента, ядры якіх маюць аднолькавую колькасць пратонаў і розную — нейтронаў. Тэрмін «І.» прапанаваў англ. фізік Ф.Содзі ў 1910. Выкарыстоўваюць у якасці ізатопных індыкатараў; радыеактыўныя І. — і як крыніцу радыеактыўнага выпрамянення; І. урану і плутонію з’яўляюцца ядзерным палівам.
Маюць аднолькавыя зарад ядраў і будову электронных абалонак, блізкія хім. ўласцівасці і займаюць адно месца ў перыяд. сістэме хім. элементаў (адсюль назва). Існаванне І. даказана эксперыментальна ў 1906—10 пры вывучэнні радыеактыўных элементаў. Кожны хім. элемент можа мець стабільныя і радыеактыўныя І. Большасць прыродных элементаў — сумесь І.; залежнасць іх ізатопнага складу ад узросту ўзораў і ўмоў іх утварэння пакладзена ў аснову вызначэння ўзросту горных парод і рудных радовішчаў. Маюць блізкія фіз.-хім. ўласцівасці, таму іх адноснае ўтрыманне амаль не змяняецца пры розных прыродных працэсах. Невял. адрозненні ўласцівасцей І. прыводзяць да ізатопных эфектаў і выкарыстоўваюцца, напр., для іх раздзялення.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МЁСБА́ЎЭРА ЭФЕ́КТ,
рэзананснае выпрамяненне і паглынанне гама-квантаў атамнымі ядрамі. Адкрыты ў 1958 Р.Л.Мёсбаўэрам. Выкарыстоўваецца пры вывучэнні ўнутраных эл. і магн. палёў у крышталях, ваганняў атамаў крышт. рашоткі, пры правядзенні хім. аналізу і інш. З’яўляецца самым дакладным метадам вымярэння энергіі эл.-магн. выпрамянення, напр., з дапамогай М.э. вызначана гравітацыйнае чырвонае зрушэнне частаты фатонаў, прадказанае адноснасці тэорыяй.
Назіраецца для ядраў з малымі (да 150 кэВ) энергіямі ўзбуджэння, напр., для жалеза-57, волава-119, цынку-67, ірыдыю-191; адпаведныя лініі выпрамянення маюць амаль натуральную шырыню. Пры выпрамяненні (ці паглынанні) гама-кванта свабоднае ядро набывае пэўны імпульс і адпаведную энергію аддачы. Значэнне гэтай энергіі істотна перавышае шырыню лініі выпрамянення, а імавернасць рэзананснага паглынання малая. М.э. узнікае, калі імпульс аддачы перадаецца ўсяму крышталю як цэламу, у выніку чаго энергія на аддачу не выдаткоўваецца і энергетычны спектр выпрамянення (паглынання) мае вузкую лінію, энергія якой роўная энергіі адпаведнага пераходу.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МІЖПЛАНЕ́ТНАЕ АСЯРО́ДДЗЕ,
матэрыяльнае асяроддзе, якое запаўняе прастору ўнутры планетных сістэм Сонца і інш. зорак. Склад і ўласцівасці М.а. вызначаюцца тыпам зоркі. М.а. складаецца з цвёрдых цел (памеры ад 103м і менш), дробных часцінак і пылу, што ўтвараюцца пры сутыкненнях малых планет і распадзе ядраў камет, а таксама іонаў і электронаў, якія выкідваюцца з сонечнай кароны (сонечны вецер), і касмічных прамянёў.
Газавая кампанента М.а. з-за ўздзеяння сонечнага ветру малая; усюды выяўлены ў невял. колькасці нейтральны вадарод (паблізу арбіты Зямлі яго канцэнтрацыя 0,01 атама у 1 см³). Большасць цвёрдых цел М.а. рухаецца вакол Сонца паблізу плоскасці экліптыкі (канцэнтрацыя іх павялічваецца ў напрамку да Сонца). Шчыльнасць часцінак пылу 2—8 г/см³. Часцінкі памерам меней за 1 мкм выносяцца з Сонечнай сістэмы пад уздзеяннем светлавога ціску сонечных прамянёў. Каля 16 тыс.т міжпланетных часцінак пылу асядаюць штогод на зямную паверхню.