ЛА́ЗЕРНАЯ ФІ́ЗІКА,

раздзел фізікі, у якім вывучаюцца працэсы генерацыі, узмацнення і распаўсюджвання лазернага выпрамянення, яго ўзаемадзеяння з рознымі асяроддзямі і аб’ектамі; фіз. асновы стварэння і выкарыстання лазераў частка квантавай электронікі.

Узнікла ў 1960-я г. на мяжы оптыкі, радыёфізікі, электронікі і матэрыялазнаўства. Атрымала хуткае развіццё з прычыны асаблівых якасцей лазернага промня: яго надзвычай высокіх кагерэнтнасці, монахраматычнасці, накіравальнасці распаўсюджвання, прасторавай і часавай шчыльнасці энергіі, вельмі малой працягласці асобных імпульсаў. Гэтыя якасці, іх спалучэнні і камбінацыі абумовілі развіццё лазернай тэхнікі — лазерных сродкаў даследавання розных асяроддзяў і аб’ектаў, выканання разнастайных лазерных тэхналогій, у т.л. тонкіх, стварэння аптычнай сувязі, апрацоўкі, запісу і счытвання інфармацыі (гл. Аптычны запіс). Выкарыстанне лазернага выпрамянення выклікала змены шэрагу паняццяў і ўяўленняў оптыкі і інш. галін ведаў. У выніку выкарыстання лазераў выяўлены і даследаваны такія нелінейна-аптычныя з’явы, як генерацыя гармонік, складанне і адыманне частот, вымушанае камбінацыйнае рассеянне, самафакусіроўка і тунэляванне лазернага пучка, чатырохфатоннае змешванне, двухфатоннае паглынанне, амплітудна-фазавая канверсія мадуляцыі, утварэнне салітонаў і інш. Нелінейна-аптычныя з’явы знайшлі шырокае выкарыстанне для кіравання характарыстыкамі лазернага выпрамянення (пры яго генерацыі і распаўсюджванні), вывучэння структуры рэчыва (гл. Лазерная спектраскапія) і дынамікі розных працэсаў у асяроддзях. У імпульсах лазернага выпрамянення фемтасекунднай (10 с) працягласці дасягнуты шчыльнасці магутнасці парадку 10​21 Вт/см². Сілы ўздзеяння такіх імпульсаў на электроны і ядры атамаў істотна перавышаюць сілы іх узаемадзеяння ў ядрах, што дае магчымасць кіроўнага ўздзеяння на структуру атамаў і малекул. Лазерныя крыніцы выпрамянення выкарыстоўваюцца ў звычайных аптычных прыладах, што значна паляпшае іх характарыстыкі і пашырае магчымасці, і для стварэння прынцыпова новых прылад і метадаў даследавання, новых тэхн. сродкаў (аптычныя дыскі. лазерныя прынтэры, аудыё- і відэапрайгравальнікі, лініі валаконна-аптычнай сувязі, галаграфічныя і кантрольна-вымяральныя прылады). Дасягненні Л.ф. шырока выкарыстоўваюцца ў розных галінах навукі, прамысл. тэхналогіях, у ваен. тэхніцы, касманаўтыцы, медыцыне.

На Беларусі даследаванні па Л.ф. пачаліся ў 1961 у Ін-це фізікі АН пад кіраўніцтвам Б.І.Сцяпанава. Праводзяцца ў ін-тах фіз. і фізіка-тэхн. профілю Нац. АН Беларусі, установах адукацыі і прамысл. арг-цыях. Прадказана і атрымана генерацыя на растворах складаных малекул, створана серыя лазераў з плаўнай перастройкай частаты ў шырокім дыяпазоне; прапанаваны метады разліку і кіравання энергет., часавымі, частотнымі, палярызацыйнымі і вуглавымі характарыстыкамі лазераў і лазернага выпрамянення; створаны новыя тыпы лазерных крыніц святла агульнага і спец. прызначэння. Распрацаваны фіз. асновы дынамічнай галаграфіі, вывучаны заканамернасці ўзнікнення і працякання многіх нелінейна аптычных з’яў і распаўсюджвання святла ў нелінейна-аптычных асяроддзях.

Літ.:

Апанасевич П.А Основы теории взаимодействия света с веществом. Мн., 1977;

Коротеев Н.И., Шумай И.Л. Физика мощного лазерного излучения. М., 1991;

Ярив А. Введение в оптическую электронику: Пер. с англ. М., 1983;

Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М., 1988.

П.А.Апанасевіч.

т. 9, с. 101

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПАНАСЕ́ВІЧ (Павел Андрэевіч) (н. 14.7.1929, в. Стараселле Докшыцкага р-на Віцебскай вобл.),

бел. фізік. Акад. (1984, чл.-кар. 1980) АН Беларусі. Засл. дз. нав. Беларусі (1955). Д-р фіз.-матэм. н. (1974), праф. (1977). Скончыў БДУ (1954). З 1955 у Ін-це фізікі АН Беларусі (з 1987 дырэктар). Навук. працы па оптыцы і лазернай фізіцы. Развіў тэорыю ўздзеяння магутнага выпрамянення на спектральна-аптычныя характарыстыкі атамаў і малекул, устанавіў шэраг заканамернасцяў узаемадзеяння патокаў святла ў розных асяроддзях, генерацыі звышкароткіх светлавых імпульсаў, вымушанага камбінацыйнага рассеяння. Распрацаваў шэраг метадаў нелінейнай спектраскапіі і кіравання параметрамі лазерных патокаў. Дзярж. прэмія Беларусі 1978. Дзярж. прэмія СССР 1982.

Тв.:

Таблицы распределения энергии и фотонов в спектре равновесного излучения. Мн., 1961 (разам з В.С.Айзенштатам);

Основы теории взаимодействия света с веществами. Мн., 1977.

т. 1, с. 417

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЯРЧЭ́ННЕ ПЛО́СКАСЦІ ПАЛЯРЫЗА́ЦЫІ святла,

паварот плоскасці палярызацыі лінейна палярызаванага святла пры праходжанні яго праз некаторыя рэчывы; від падвойнага праменепраламлення. Адбываецца ў аптычна актыўных ізатопах асяроддзя і ў актыўных крышталях (гл. Аптычная актыўнасць), а таксама ў неактыўных рэчывах пры дзеянні на іх знешняга магнітнага поля (гл. Фарадэя эфект).

Пры вярчэнні плоскасці палярызацыі ў асяроддзі ўзнікаюць 2 эл.-магн. хвалі, палярызаваныя па крузе ў процілеглых напрамках вярчэння, з аднолькавымі амплітудамі і рознымі скарасцямі. У выніку гэтага плоскасць палярызацыі сумарнай хвалі паступова паварочваецца. Вугал павароту залежыць ад таўшчыні, канцэнтрацыі, т-ры рэчыва і даўж. хвалі святла. Вярчэнне плоскасці палярызацыі выкарыстоўваецца для даследавання будовы рэчыва, пры вызначэнні канцэнтрацыі аптычна-актыўных рэчываў, а таксама ў некат. аптычных прыладах (аптычныя мадулятары, квантавыя гіраскопы і інш.). Гл. таксама Палярызацыя святла.

В.В.Валяўка.

т. 4, с. 398

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НАВІГАЦЫ́ЙНЫЯ ПРЫЛА́ДЫ,

прылады для вымярэння параметраў руху судна, лятальнага апарата (ЛА), інш. рухомых аб’ектаў, для вызначэння месцазнаходжання і кіравання імі; адзін с тэхн. сродкаў навігацыі.

Бываюць: аўтаномныя (дзейнічаюць без прыёму сігналаў ад знешніх крыніц) і неаўтаномныя (устанаўліваюцца на рухомым аб’екце, вызначаюць навігацыйныя параметры па сігналах наземных, марскіх, паветр. і касм. установак); паводле прынцыпу дзеяння — гіраскапічныя, магн., гідраўл., радыётэхн., гідраакустычныя, інерцыйныя, аптычныя, інфрачырвоныя, механічныя. Да Н.п. адносяцца авіягарызонты, авіякомпасы, аўтапілоты, аўтарулявыя, аўташтурманы, вышынямеры, компасы, у т.л. гіракомпасы, курсографы, лагі, лоты, у т.л. рэхалоты, пеленгатары, секстанты, хранометры, гіравертыкалі, нахіламеры, аўтапракладчыкі, вымяральнікі скорасці ЛА, прыёмаіндыкатары радыёнавігацыйных і гідраакустычных сістэм (прызначаны для вызначэння напрамкаў на перадаючыя станцыі, вымярэння адлегласцей да іх і атрымання па гэтых даных каардынат аб’екта з дапамогай ЭВМ або табліц і спец. карт).

В.В.Латушкін, П.М.Шумскі.

т. 11, с. 104

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛЮСТЭ́РКА,

цела з адбівальнай паверхняй, няроўнасці якой не перавышаюць долей даўжыні хвалі (эл.-магн. ці гукавой). Выкарыстоўваецца ў побыце, астр. і фіз. прыладах, ультрагукавой апаратуры, медыцыне і інш.

Уласцівасці Л. вызначаюцца каэфіцыентам адбіцця матэрыялу, з якога яно зроблена, і формай яго паверхні. Каэфіцыент адбіцця ўплывае на энергію адбітай хвалі, для яго павелічэння на паверхню Л. наносяць тонкі слой металу або мнагаслойнае дыэл. пакрыццё. Форма Л. вызначае від адбітай хвалі (плоскай, цыліндрычнай, сферычнай). Плоскае Л. змяняе толькі напрамак распаўсюджвання хвалі і захоўвае яе від (напр., плоская хваля застаецца плоскай, сферычная — сферычнай). Увагнутыя і выпуклыя Л. з паверхняй рознай формы змяняюць напрамак распаўсюджвання і від адбітай хвалі, напр., плоская хваля пры адбіцці ад знешняй паверхні конуса пераўтвараецца ў цыліндрычную, цыліндрычная пры адбіцці ад унутранай паверхні конуса — у плоскую. Аптычныя Л. пазбаўлены храматычнай аберацыі (гл. Аберацыі аптычных сістэм).

т. 9, с. 409

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАЛАКО́ННА-АПТЫ́ЧНАЯ СУ́ВЯЗЬ,

сувязь, у якой перадача інфармацыі адбываецца з дапамогай эл.-магн. ваганняў аптычнага дыяпазону (10​14 — 10​15 Гц) і шкловалаконных святлаводаў; від аптычнай сувязі. Найб. перспектыўны кірунак развіцця тэлекамутацыйных сістэм і сетак. Адрозніваецца ад інш. відаў сувязі вял. колькасцю каналаў (вял. прапускная здольнасць), вял. скорасцю перадачы інфармацыі, высокай аховай ад эл.-магн. перашкод, нізкай імавернасцю памылак, малымі памерамі, масай і энергаспажываннем, прастатой мантажу і пракладкі.

Валаконна-аптычная сувязь дае магчымасць ствараць сеткі тэлекамунікацый з інтэграцыяй службаў (абмен рознымі відамі інфармацыі — тэлефаніі, даных ЭВМ, ПЭВМ, факсіміле; відэаінфармацыі, тэлебачання — у адной лічбавай сетцы). Валаконна-аптычныя лініі сувязі выкарыстоўваюцца ў кабельным тэлебачанні, выліч. тэхніцы, тэлефоннай і касм. сувязі, у сістэмах кантролю і кіравання тэхнал. працэсамі, медыцыне (дыягностыцы, хірургіі) і інш. Гл. таксама Валаконная оптыка.

Літ.:

Основы волоконно-оптической связи: Пер. с англ. М., 1980;

Волоконно-оптические системы передачи. М., 1992.

Я.В.Алішаў.

т. 3, с. 471

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛО́РЭНЦ ((Lorentz) Хендрык Антон) (18.7.1853, г. Арнем, Нідэрланды — 4.2.1928),

нідэрландскі фізік-тэарэтык, стваральнік электроннай тэорыі і электрадынамікі рухомых асяроддзяў. Замежны чл.-кар. Пецярб. АН (1910), ганаровы чл. АН СССР (1925). Вучыўся ў Лейдэнскім ун-це (1870—72), з 1878 праф. гэтага ун-та. З 1923 дырэктар ін-та Тэйлара ў Харлеме. Арганізатар і старшыня Сальвееўскіх кангрэсаў фізікаў (1914—27). Навук. працы па электрадынаміцы, тэрмадынаміцы і статыстычнай механіцы, оптыцы і тэорыі выпрамянення. Зыходзячы з эл.-магн. тэорыі Дж.Максвела стварыў класічную электронную тэорыю (1880—1909), на падставе якой растлумачыў шэраг эл.-магн. з’яў, а таксама эл.-магн. і аптычныя ўласцівасці рэчыва, атрымаў формулу для вызначэння сілы, што дзейнічае на рухомы зарад у магн. полі (гл. Лорэнца сіла), растлумачыў Зеемана з’яву. Незалежна ад Дж.Лармара атрымаў рэлятывісцкія пераўтварэнні каардынат і часу (гл. Лорэнца пераўтварэнні). Даследаванні Л. спрыялі стварэнню адноснасці тэорыі. Нобелеўская прэмія 1902 (разам з П.Зееманам).

Літ.:

Кляус Е.М., Франкфурт У.И., Френк А.М. Г.А.Лоренц, 1853—1928. М., 1974.

А.І.Болсун.

т. 9, с. 345

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫЛІЧА́ЛЬНАЯ МАШЫ́НА,

інструментальны сродак (або сукупнасць сродкаў) для апрацоўкі інфармацыі, у т. л. вылічэнняў, кіравання, рашэння задач. Бываюць мех., эл., электронныя, гідраўл., пнеўматычныя, аптычныя і камбінаваныя; у залежнасці ад формы выяўлення інфармацыі адрозніваюць аналагавыя вылічальныя машыны, лічбавыя вылічальныя машыны і гібрыдныя вылічальныя сістэмы.

Першы праект універсальнай «аналітычнай машыны» (гіганцкага арыфмометра з праграмным кіраваннем, арыфм. і запамінальным блокам), які, аднак, не быў поўнасцю рэалізаваны, распрацаваў англ. вынаходца і матэматык Ч.Бэбідж у 1883. Асн. ідэі праекта закладзены ў аснову работы сучаснай вылічальнай машыны: праграма вылічэнняў захоўваецца ў памяці машыны і выконваецца аўтаматычна. Развіццё электратэхнікі і радыёэлектронікі прывяло да стварэння ў 1930-я г. спецыялізаваных аналагавых вылічальных машын. Першыя электронныя вылічальныя машыны, заснаваныя на выяўленні інфармацыі ў лічбавай двайковай форме, распрацаваны ў 1940-я г. на аснове развіцця эл. пераключальных схем у аўтам. тэлеф. сувязі, электроннай кантрольна-вымяральнай апаратуры, радыёлакацыі. Гл. таксама Вылічальная машына «Мінск», Вылічальная тэхніка, Вылічальны цэнтр, Вылічальная сістэма.

Літ.:

Голубинцев В.О., Купаев В.М., Синельников Е.М. Эволюция универсальных ЦВМ. М., 1980.

М.П.Савік.

т. 4, с. 312

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МОНАКРЫШТА́ЛЬ,

(ад мона... + крышталі), асобны крышталь з адзінай неперарыўнай крышт. рашоткай. Характэрная асаблівасць М. — залежнасць большасці яго фіз. уласцівасцей ад напрамку (анізатрапія). Усе яго фіз. ўласцівасці (эл., магн., аптычныя, акустычныя, мех. і інш.) звязаны паміж сабой і абумоўлены крышт. структурай, сіламі сувязі паміж атамамі і энергет. спектрам электронаў (гл. Зонная тэорыя).

Многія М. маюць асаблівыя фіз. ўласцівасці: алмаз вельмі цвёрды, сапфір, кварц, флюарыт — надзвычай празрыстыя, ніткападобныя крышталі карунду рэкордна моцныя. Многія М. адчувальныя да знешніх уздзеянняў (святла, мех. напружанняў, магн. і эл. палёў, радыяцыі і інш.) і выкарыстоўваюцца як пераўтваральнікі ў квантавай электроніцы, радыёэлектроніцы, лазернай фізіцы, акустыцы і інш. Прыродныя М. трапляюцца рэдка, найчасцей маюць малыя памеры і вял. колькасць дэфектаў структуры (гл. Дэфекты ў крышталях) Таму ў электронным прыладабудаванні выкарыстоўваюць штучныя М. з дасканалай крышт. структурай, зададзенымі ўласцівасцямі і памерамі (гл. Сінтэтычныя крышталі). Створана вял. колькасць сінтэтычных М., якія не маюць прыродных аналагаў.

Літ.:

Лодиз Р.А., Паркер Р.Л. Рост монокристаллов: Пер. с англ. М., 1974;

Нашельский А.Я. Монокристаллы полупроводников. М., 1978.

т. 10, с. 517

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НО́СЬБІТ ІНФАРМА́ЦЫІ,

матэрыяльны сродак для запісу, назапашвання, захоўвання і ўзнаўлення інфармацыі, а таксама абмену ёю паміж людзьмі або машынамі. Інфармацыя запісваецца шляхам змен фіз., хім. ці мех. уласцівасцей запамінальнага асяроддзя. Выкарыстоўваецца ў сістэмах гука- і відэазапісу, аўтам. апрацоўкі інфармацыі, інфармацыйна-пошукавых сістэмах і інш.

Асн. паказчыкі: габарытныя памеры, шчыльнасць запісу, часавыя характарыстыкі (працягласць запісу, счытвання і пошуку інфармацыі) і інш. Бываюць з неперарыўным (магн. стужкі, аптычныя і магн. дыскі і інш.) і дыскрэтным (ферытавыя стрыжні і кольцы, перфакарты і інш.) асяроддзем запісу, адна- (аднаразовы запіс інфармацыі і мнагакратнае счытванне) і шматразовыя (мнагакратныя запіс і сціранне інфармацыі на адных і тых жа ўчастках асяроддзя). Адрозніваюць таксама чалавекаарыентаваныя (напр., папяровыя носьбіты рукапіснай, друкаванай і выяўл. інфармацыі) і машынаарыентаваныя Н.і., якія дазваляюць непасрэдна ўводзіць інфармацыю ў ЭВМ, выліч. сістэмы і інш. Праблемай беспапяровай інфарматыкі з’яўляецца наданне юрыд. сілы машынным Н.і.

На Беларусі прававыя асновы (у т.л. аўтарскія правы) выкарыстання электронных дакументаў на машынных Н.і. рэгламентуюцца законам «Аб электронным дакуменце» (2000).

М.П.Савік.

т. 11, с. 381

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)