ГРО ((Gros) Антуан Жан) (16.3.1771, Парыж — 26.6.1835),

французскі жывапісец. Вучыўся ў Парыжы ў Ж.Л.Давіда (з 1785), у Каралеўскай акадэміі жывапісу і скульптуры (1787). У 1793—1804 працаваў у Італіі. У 1880-я г. афіцыйны жывапісец Напалеона I. Стварыў шэраг карцін, прасякнутых духам гераічнай патэтыкі і прысвечаных паходам і бітвам франц. арміі («Банапарт на Аркольскім мосце», 1796; «Бітва каля Назарэта, 1801; «Бітва каля Эйлау», 1808), парадных партрэтаў (кн. М.Б.Юсупава, 1809; палк. Ф.Фурнье-Сарлавеза, 1812). Вастрыня сюжэтаў, драм. кантрасты і маляўнічыя эфекты карцін Гро паўплывалі на традыц. каноны батальнага жанру. Пісаў таксама карціны на сюжэты антычнасці і сярэднявечча.

Літ.:

Чегодаев А.Д. Легенда о бароне Гро // Чегодаев А.Д. Статьи об искусстве Франции, Англии, США 18—20 вв. М., 1978.

т. 5, с. 419

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛІ́ЧБАВАЯ ФАТАГРА́ФІЯ,

аптычны відарыс, які захоўваецца і перадаецца ў лічбавай форме; працэс атрымання такога відарыса з дапамогай, напр., лічбавага фотаапарата. Адносіцца да мультымедыйных сродкаў захоўвання і апрацоўкі інфармацыі (гл. Мультымедыя).

Аптычны відарыс аб’екта здымкі праектуецца ў лічбавым фотаапараце на ПЗС-матрыцу, дзе пераўтвараецца ў эл. сігнал, які запісваецца ў лічбавай форме ў блок памяці апарата. Знятыя відарысы можна праглядаць на ўбудаваным дысплеі, праводзіць іх апрацоўку (гл. Лічбавая апрацоўка відарысаў), напр., з дапамогай убудаванага працэсара рабіць мантаж і спец. эфекты, спалучаць асобныя кадры ў панараму, дадаваць звесткі аб умовах і часе здымкі, тэкставыя або гукавыя каментарыі. Лічбавы фотаапарат можна далучыць да камп’ютэра ці інш. канала сувязі з мэтай перадаць (ці атрымаць) відарысы, правесці іх далейшую апрацоўку, раздрукаваць на прынтэры і інш.

А.П.Ткачэнка.

т. 9, с. 328

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

«ВЯЛІ́КАЕ АБ’ЯДНА́ННЕ»,

тэарэтычныя мадэлі квантавай тэорыі поля, у аснову якіх пакладзена ідэя адзінства моцных, эл.-магн. і слабых узаемадзеянняў пры звышвысокіх энергіях ці на звышмалых адлегласцях.

Падставай для стварэння «вялікага аб’яднання» з’явіліся эфекты вакууму квантавай тэорыі палёў; экранаванне эл. зараду і антыэкранаванне каляровага зараду ў квантавай хромадынаміцы, з чаго вынікае, што пры пэўным значэнні энергіі эфектыўныя зарады (канстанты ўзаемадзеяння) могуць супадаць. Ідэя «вялікага аб’яднання» эксперыментальна пацвярджаецца адзінай тэорыяй электраслабых узаемадзеянняў. «Вялікае аб’яднанне» тлумачыць квантаванне эл. зараду, прадказвае распад пратона і існаванне манаполяў магнітных. Энергія, пры якой адбываецца «вялікае аб’яднанне», блізкая да т.зв. планкаўскай масы (10​19 ГэВ) — энергіі, пры якой неабходна ўлічваць квантавыя гравітацыйныя з’явы, што дае падставы для аб’яднання ў такім падыходзе 4 відаў узаемадзеянняў (гл. Узаемадзеянні элементарных часціц).

Літ.:

Окунь Л.Б. Физика элементарных частиц. 2 изд. М., 1988.

А.Я.Таўкачоў.

т. 4, с. 356

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРАВІТАЦЫ́ЙНАЕ ЎЗАЕМАДЗЕ́ЯННЕ,

адзін з тыпаў фундаментальных узаемадзеянняў (разам з моцным, эл.-магн. і слабым), які характарызуецца ўдзелам у працэсах узаемадзеяння гравітацыйнага поля (поля прыцягнення). У адрозненне ад іншых узаемадзеянняў мае універсальны характар: гравітацыйнае ўзаемадзеянне ў аднолькавай ступені ўласціва ўсім матэрыяльным аб’ектам — ад элементарных часціц да зорак і галактык.

У гравітацыйным узаемадзеянні ўдзельнічаюць усе класы элементарных часціц (напр., фатон, лептоны, адроны). З-за іх малых мас гравітацыйнае ўзаемадзеянне з’яўляецца самым слабым з усіх тыпаў узаемадзеянняў элементарных часціц і ў тэорыі элементарных часціц звычайна не ўлічваецца. Гравітацыйнае ўзаемадзеянне можа стаць істотным пры ўліку эфектаў квантавай тэорыі гравітацыі, паводле якой гравітацыйнае ўзаемадзеянне тлумачыцца як вынік абмену квантамі гравітацыйнага поля — гравітонамі. Гравітацыйнае ўзаемадзеянне мае бясконца вял. радыус дзеяння і адыгрывае важную ролю ў макрасвеце, з’яўляючыся асн. фактарам узаемадзеяння і эвалюцыі планет, зорак, галактык і самога Сусвету. Для дастаткова слабых гравітацыйных палёў выконваецца сусветнага прыцягнення закон. Гравітацыйныя эфекты, рух цел і эвалюцыя астрафіз. аб’ектаў у моцных палях прыцягнення падпарадкоўваюцца законам агульнай адноснасці тэорыі. Гл. таксама Прыцягненне.

М.М.Касцюковіч.

т. 5, с. 383

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГУ́КАПІС у музыцы, увасабленне сродкамі музыкі розных гукавых і пазагукавых з’яў навакольнага свету. Апіраецца на выяўл. магчымасці муз. мастацтва, якія выступаюць у 2 асн. тыпах: гукавая імітацыя і выяўленчасць асацыятыўнага характару. Сярод рэальных гучанняў прадметнага асяроддзя, якія часта імітуюцца ў музыцы: пляск хваль, шум мора, шапаценне лесу (у оперы «Марынка» Р.Пукста), гучанне муз. інструментаў, гаворка, стогны, плач чалавека і інш. Імітацыя можа быць ідэнтычная аб’екту пераймання па тэмбры, інтанацыях ці больш апасродкаванай. Гукавыяўленчасць асацыятыўнага тыпу засн. на слыхавым успрыманні муз. гукаў як узаемазвязаных з рознымі пазагукавымі з’явамі (дынамічнымі, каларыстычнымі, аптычнымі). Асацыятыўны гуказапіс часта выступае як элемент праграмнай музыкі, дзе загалоўкі і рэмаркі канкрэтызуюць вобразны змест. На практыцы імітацыйны і асацыятыўны гуказапісы часта аб’ядноўваюцца (харэаграфічная навела «Мушкецёры» Я.Глебава). З узнікненнем электроннай музыкі (муз. камп’ютэраў, сінтэзатараў і інш. эл.-муз. канструкцый) у гуказапісе шырока выкарыстоўваюцца новыя гукавыяўл. эфекты, незвычайныя, «незямныя», «касмічныя» гучнасці (у т. л. ў кіно, драм. т-ры, на эстрадзе і інш.).

Н.А.Юўчанка.

т. 5, с. 525

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́МА-АМІНАМА́СЛЯНАЯ КІСЛАТА́,

4-амінамасляная кіслата, піперыдзінавая кіслата, ГАМК, HOOCH2CH2CN2NH2, амінакіслата, адзін з медыятараў нерв. сістэмы. Белы крышталічны парашок са слабагоркім смакам і слабым спецыфічным пахам, лёгка растваральны ў вадзе і слаба ў спірце. Гама-амінамасляная кіслата прамежкавы прадукт абмену некат. інш. амінакіслот, адсутнічае ў саставе бялкоў. У свабодным стане знаходзіцца ў многіх раслінах (каранях сталовых буракоў — 0,016 мг%, няспелых яблыках, зялёных парастках і калоссі злакаў, лісці тытуню, водарасці хларэла, дражджах і інш.), у вышэйшых млекакормячых — толькі ў тканках мозга (да 100 мг%).

Крыніца сакрэцыі гама-амінамаслянай кіслаты лакалізавана ў асобых нейронах нерв. тканкі і ў некат. інш. клетках (напр., бэта-клетках падстраўнікавай залозы). У ракападобных і насякомых гама-амінамасляная кіслата служыць медыятарам тармазных рухальных нейронаў, у мозгу пазваночных — медыятарам многіх тармазных інтэрнейронаў. Гама-амінамасляная кіслата абумоўлівае тармозячыя і ўзбуджальныя эфекты. Пад яе ўплывам узмацняюцца абменна-энергет. працэсы ў галаўным мозгу, яго кровазварот, дынаміка нерв. працэсаў, памяць, аблягчаецца выдаленне з мозга таксічных рэчываў і інш. Вядомы сінт. лек. прэпараты гама-амінамаслянай кіслаты (напр., аміналон, або гамалон, і інш.), якія з’яўляюцца паскаральнікамі мазгавога метабалізму.

А.М.Ведзянееў.

т. 5, с. 8

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БО́ЛЬЦМАНА СТАТЫ́СТЫКА,

раздзел статыстычнай фізікі, які вывучае ўласцівасці сістэм неўзаемадзейных часціц (электронаў, атамаў, малекул), што рухаюцца паводле законаў класічнай механікі.

Распрацавана ў 2-й пал. 19 ст. Дж.К.Максвелам і Л.Больцманам. Ва ўмовах цеплавой раўнавагі стан ідэальнага газу апісваецца функцыяй размеркавання 𝑓 = Cexp(-E/kT), дзе C — нарміровачная канстанта, E — поўная мех. энергія (сума кінетычнай і патэнцыяльнай энергія часціцы), k — Больцмана пастаянная, T — абс. тэмпература. Функцыя 𝑓 наз. размеркаваннем Максвела—Больцмана, з якога вынікае закон раўнамернага размеркавання кінетычнай энергіі па ступенях свабоды малекул: на кожную ступень свабоды прыпадае ў сярэднім энергія 1/2 kT. Больцмана статыстыкай карыстаюцца ў тых выпадках, калі квантавыя эфекты ў руху часціц можна не ўлічваць. Крытэрый яе дастасавальнасці (2ΠmkT)​3/2/nh>1, дзе m — маса часціцы, n — канцэнтрацыя часціц, h — Планка пастаянная. Гэты крытэрый практычна выконваецца для малекул звычайных газаў і электронаў праводнасці ў паўправадніках. Для мікрачасціц Больцмана статыстыка недакладная і заменьваецца статыстыкай Бозе—Эйнштэйна або Фермі—Дзірака (гл. Квантавая статыстыка).

Больцмана статыстыка шырока карыстаецца ў кінетычнай тэорыі газаў, фізіцы паўправаднікоў, фізіцы плазмы, тэорыі эл. і магн. з’яў у рэчыве і інш. галінах фізікі.

В.І.Кузьміч.

т. 3, с. 210

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПАГАНІ́НІ ((Paganini) Нікало) (27.10.1782, г. Генуя, Італія —27.5.1840),

італьянскі скрыпач, гітарыст, кампазітар. Вучыўся пераважна самастойна, напачатку — у бацькі. З 11-гадовага ўзросту выступаў у Італіі, з 1828 у інш. краінах Еўропы, хутка заваяваў сусв. вядомасць. Мастак-наватар, прадстаўнік муз. рамантызму, фенаменальны віртуоз, П. зрабіў карэнны пераварот у культуры і тэхніцы скрыпічнага выканальніцтва, узбагаціў і расшырыў магчымасці скрыпкі, увёў у свае скрыпічныя п’есы новыя каларыстычныя і тэхн. эфекты (выкарыстоўваў тэхніку двайных нот, ігру на адной струне, pizzicato, флажалеты). Некаторыя яго творы з-за іх складанасці доўгі час лічыліся не прыдатнымі для выканання. Творчасць П. зрабіла вял. ўплыў на далейшае развіццё інстр. музыкі. Сярод твораў: 6 канцэртаў (1815—30), «Вечны рух» для скрыпкі з арк.; 24 капрысы для скрыпкі сола (1807, выд. 1820), цыклы варыяцый, санаты для скрыпкі і гітары, камерна-інстр. ансамблі, каля 200 п’ес для гітары, вак. творы і інш. Своеасаблівае дэманічнае аблічча П., вулканічны тэмперамент, некат. эпізоды біяграфіі спарадзілі вакол яго імя фантаст. легенды. З 1954 у Генуі штогод праводзіцца Міжнар. конкурс скрыпачоў імя П.

Літ.:

Ямпольский И.М. Н.Паганини: Жизнь и творчество 2 изд. М., 1968;

Тибальди-Кьеза М. Паганини: Пер. с итал. М., 1986;

Григорьев В.Ю Н.Паганини: Жизчь и творчество. М., 1987.

Н.Паганіні.

т. 11, с. 475

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЯЗА́ННЕ,

від тэкстыльнага пляцення з суцэльнай ніткі, выгнутай у петлі, якія злучаюцца паміж сабой у падоўжным і папярочным напрамках, утвараючы эластычнае палатно — трыкатаж, вытворчасць трыкат. вырабаў; від народнага дэкаратыўна-прыкладнага мастацтва. Адрозніваюць вязанне ручное і машыннае. Прамежкавае месца займае вязанне з дапамогай ручных вязальных апаратаў рознай ступені складанасці.

Існуюць 2 асн. спосабы вязання: правязванне пятлі з адначасовым яе закрываннем (вязанне кручком) і правязванне рада незакрытых петляў з наступным іх закрываннем (вязанне пруткамі або з дапамогай прыстасаванняў у выглядзе ліштваў з калкамі). На Беларусі вязанне кручком і пруткамі вядомае з 18 ст., да 20 ст. цалкам выцесніла захаванае яшчэ ад бронзавага веку іголкавае пляценне. Камбінацыі розных прыёмаў вязання даюць магчымасць ствараць багатыя структурна-каляровыя эфекты трыкат. вырабаў. Найб. прыдатныя для вязання ніткі льняныя, баваўняныя, ваўняныя, з хім. валокнаў і змешаныя. Тонкім метал. кручком вяжуць карункі, карункавыя прошвы і падзоры для ручнікоў і бялізны, сурвэткі, абрусы, пакрывалы, адзенне і дэталі да яго; тоўстым драўляным кручком — палавікі і дыванкі. Пруткамі (метал., пластмасавыя) вяжуць сукенкі, блузкі, шарсцяныя жакеты, джэмперы, хусткі, шапкі, пальчаткі, панчохі і інш. вырабы.

Машыннае вязанне на трыкатажных машынах бывае 2 тыпаў: папярочнавязальнае (кулірнае) і асновавязальнае. Выкарыстоўваюць у вытв-сці адзення, бялізны, галантарэйных і швейных вырабаў (гл. Трыкатажная прамысловасць).

А.У.Лось.

т. 4, с. 339

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАГНІ́ТНАЯ ГІДРАДЫНА́МІКА,

галіна фізікі, якая вывучае рух электраправодных газаў і вадкасцей (вадкіх металаў, электралітаў, плазмы) ва ўзаемадзеянні з магнітным полем. Да асн. пытанняў М.г. адносяць даследаванні ўмоў раўнавагі магн. поля з электраправодным асяроддзем, цячэнняў у магн. полі, магнітадынамічных хваль, знаходжанне ўмоў устойлівасці раўнаважных канфігурацый і цячэнняў.

Тэарэт. аснова М.г. — ураўненні гідрадынамікі з улікам эл. токаў і магн палёў у асяроддзі і Максвела ўраўненні. У асяроддзях 3 вял. праводнасцю (гарачая плазма) і (або) вял. памерамі (астрафіз. аб’екты) да звычайнага газадынамічнага ціску дадаецца магн. ціск і магн. нацяжэнне, што прыводзіць да з’яўлення т.зв. альвенаўскіх хваль. М.г. тлумачыць таксама з’явы касм. фізікі: зямны і сонечны магнетызм, паходжанне магн. палёў у Галактыцы, храмасферныя ўспышкі на Сонцы, Магн. буры і інш. Як самаст. навука М.г. сфармулявана ў 1940-х г. шведскім фізікам і астрафізікам Х.Альвенам, які прадказаў новы від хваль, характэрных для добраправоднага асяроддзя ў магн. полі. З 1960-х г. даследаванні па М.г. значна пашырыліся за кошт узнікнення новых відаў вадкіх асяроддзяў, што ўзаемадзейнічаюць з магн. палямі і маюць уласную намагнічанасць (магн. вадкасці і магнітарэалагічныя суспензіі).

На Беларусі даследаванні па М.г. магн. вадкасцей і магнітарэалагічных суспензій вядуцца ў Ін-це цепла- і масаабмену Нац. АН Беларусі, БПА. Розныя эфекты, што вывучаюцца М.г., знайшлі выкарыстанне ў інж. практыцы (стварэнне магнітагідрадынамічных генератараў, МГД-помпаў, ракетных рухавікоў, магчымае ажыццяўленне кіроўнага тэрмаядзернага сінтэзу і інш.).

Літ.:

Альвен Х., Фельтхаммар К.-Г. Космическая электродинамика: Пер. с англ. 2 изд. М., 1967;

Электрогазодинамические течения. М., 1983.

В.Р.Батавой.

т. 9, с. 481

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)