ВАДАРО́ДНАЯ СУ́ВЯЗЬ,

від трохцэнтравай хімічнай сувязі тыпу A—H​δ+... B​δ-, якая ўзнікае, калі атам вадароду H адначасова злучаны з двума электраадмоўнымі атамамі A і B. З атамам A (вуглярод, азот, кісларод, сера) вадарод злучаны моцнай кавалентнай сувяззю (A—H​δ+). З атамам B (фтор, кісларод, азот, радзей хлор, сера), які мае непадзельную пару электронаў, утварае дадатковую вадародную сувязь (абазначаецца кропкамі). Вадародная сувязь на парадак слабейшая за кавалентную сувязь.

Атамы A і B могуць належаць адной (унутрымалекулярная вадародная сувязь) і розным малекулам (міжмалекулярная вадародная сувязь). Выклікае асацыяцыю аднолькавых (вада, кіслоты, спірты) ці розных малекул у асацыяты і комплексы, уплывае на крышталізацыю, растварэнне, вызначае структуру бялкоў, нуклеінавых кіслот і інш. біялагічна важных злучэнняў.

І.В.Боднар.

т. 3, с. 434

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАГНІТАМЕХАНІ́ЧНЫЯ З’Я́ВЫ.

гірамагнітныя з’явы, з’явы, абумоўленыя ўзаемасувяззю магнітнага моманту мікрачасціц з іх момантам імпульсу (спінавым або арбітальным).

Спіну электрона, пратона і інш. часціц адпавядае пэўны магн. момант. Мех. момант атама (іона) складваецца з спінавага і арбітальнага момантаў мікрачасціц, што ўтвараюць атам (іон). Змена макраскапічнага моманту імпульсу сістэмы мікрачасціц (фіз. цела) вядзе да змены магн. моманту гэтай сістэмы, і наадварот, пры змене магн. моманту зменьваецца момант імпульсу сістэмы. Адна з М.з. — Барнета эфект, адкрыты ў 1909 амер. фізікам С.Барнетам. Заключаецца ва ўзнікненні дадатковага магн. моманту ў ферамагнетыка, прыведзенага ў вярчэнне (намагнічванне стрыжня пры хуткім вярчэнні без знешняга магн. поля). Адваротны эфект — Эйнштэйна — дэ Хааза эфект (адкрыты ў 1915). М.з. дазваляюць вызначыць магнітамеханічныя адносіны.

П.А.Пупкевіч.

т. 9, с. 478

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МОНАЦУКРЫ́ДЫ, простыя цукры,

група вугляводаў, якія гідралітычна не расшчапляюцца і маюць агульную формулу CnH2nOn (n = 3−9). Упершыню сінтэз М. ажыццявіў А.М.Бутлераў (1861). Уяўляюць сабой звычайна альдозы ці кетозы. Па колькасці атамаў вугляроду адрозніваюць ніжэйшыя М. (трыёзы, тэтрозы), звычайныя (гексозы, пентозы) і вышэйшыя (актозы, гептозы, нанозы). Ёсць у саставе ўсіх жывых арганізмаў у свабодным стане (глюкоза, фруктоза) і ў складаных злучэннях (напр., глікапратэідах, поліцукрыдах, гліказідах, фосфарных эфірах і інш.). Выкарыстоўваюцца арганізмамі на будову клетачных структур, маюць вял. значэнне ў абмене рэчываў.

М. — крышт. рэчывы, салодкія, добра раствараюцца ў вадзе, дрэнна ў спірце, не раствараюцца ў эфіры Акрамя карбанільнай і гідраксільных груп у малекулу М. могуць уваходзіць замест ОН-групы атам вадароду, амінагрупа NH2 і інш. Атрымліваюць М. кіслотным гідролізам поліцукрыдаў (напр., глюкозу з крухмалу). Некат. М. (глюкоза, фруктоза) уваходзяць у састаў харч. прадуктаў, выкарыстоўваюцца ў тэхніцы і медыцыне.

т. 10, с. 519

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛАГЕНАВЫТВО́РНЫЯ ВУГЛЕВАДАРО́ДАЎ,

клас арганічных злучэнняў, якія маюць атамы галагенаў, звязаныя з вуглевадароднымі радыкаламі.

Большасць галагенавытворных вуглевадародаў бясколерныя вадкасці. У вадзе амаль не раствараюцца, добра раствараюцца ў эфіры, спірце і інш. арган. растваральніках. З вадой і слабымі растворамі шчолачаў утвараюць спірты, з аміякам — аміны, з солямі карбонавых кіслот — складаныя эфіры і г.д. Атам галагену каля вугляроду пры падвойнай сувязі (у т. л. ў араматычных галагенавытворных вуглевадародах) інертны і з цяжкасцю ўступае ў звычайныя для галагенавытворных вуглевадародаў рэакцыі (напр., вінілхларыд, хлорбензол). Пад уздзеяннем канцэнтраваных раствораў шчолачаў галагенавытворныя вуглевадароды утвараюць алкены. Атрымліваюць галагеніраваннем вуглевадародаў, спіртоў (замяшчэнне атамаў вадароду, гідроксігрупы галагенам), ненасычаных арган. злучэнняў (далучэнне галагенаў і галагенавадародаў) і інш. метадамі.

Выкарыстоўваюць як растваральнікі (метыленхларыд, тэтрахлорэтылен, трыхлорэтылен, трыхлорэтаны), холадагенты для халадзільных машын (хладоны), інсектыцыды (гексахлорбутадыен, ДД — сумесь дыхлорпрапанаў і дыхлорпрапенаў, гексахлорцыклагексан), абязбольвальныя сродкі ў медыцыне (хлараформ, этылхларыд, ёдаформ), як антыпірэны, у вытв-сці палімераў (полівінілхларыд, фторапласты) і інш. арган. рэчываў.

К.Л.Майсяйчук.

т. 4, с. 445

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПАЗІТРО́НІЙ,

звязаная сістэма часціц электрона і пазітрона. Падобны на атам вадароду, дзе пратон заменены пазітронам. Мае масу, роўную 2 электронным, а памеры ўдвая большыя за памеры атама вадароду.

Утвараецца пры сутыкненнях павольных пазітронаў з атамамі рэчыва. У залежнасці ад узаемнай арыентацыі спінаў электрона і пазітрона адрозніваюць ортапазітроній (спіны часціц паралельныя; час жыцця τ = 1,4∙10​−7 с; распадаецца на 3 γ-кванты) і парапазітроній (антыпаралельныя; τ = 1,25∙10​−10 с; распадаецца на 2 γ-кванты).

Палярызаваны П., утвораны пазітронам, атрыманым пры бэта-распадзе, мае своеасаблівыя ўласцівасці: вектар яго спіна прэцэсіруе вакол напрамку магн. поля (тэарэтычна прадказана У.Р.Барышэўскім і эксперыментальна назіралася ў Ін-це фізікі Нац. АН Беларусі). Уласцівасці і час жыцця П. ў рэчыве адрозныя ад характарыстык свабоднага П. і вызначаюцца ўласцівасцямі рэчыва. Выкарыстоўваецца для вывучэння фіз.-хім. асаблівасцей рэчыва, напр., хуткіх хім. рэакцый атамарнага вадароду, працягласць працякання якіх параўнальная з часам жыцця П.

І.С.Сацункевіч.

т. 11, с. 517

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫРАДЖЭ́ННЕ ў квантавай механіцы, уласцівасць некаторых фізічных велічынь, што апісваюць фіз. сістэму (атам, малекулу і інш.), мець аднолькавае значэнне для розных станаў сістэмы. Колькасць станаў сістэмы, якім адпавядае адно і тое ж значэнне пэўнай фіз. велічыні, наз. кратнасцю выраджэння дадзенай фіз. велічыні. Напр., калі не ўлічваць эл.-магн. і слабыя ўзаемадзеянні («выключыць» іх), то ўласцівасці пратона і нейтрона будуць аднолькавыя і іх можна разглядаць як 2 станы адной часціцы (нуклона), якія адрозніваюцца толькі эл. зарадам.

Найб. важнае выраджэнне ўзроўняў энергіі: сістэма мае пэўнае значэнне энергіі, але пры гэтым можа быць у розных станах. Напр., свабодная часціца мае бясконцакратнае выраджэнне энергіі: энергія вызначаецца модулем імпульсу, а напрамак імпульсу можа быць любым. Пры руху часціцы ў знешнім сілавым полі выраджэнне можа поўнасцю або часткова здымацца, напр., у магн. полі выяўляецца залежнасць энергіі ад напрамку магн. моманту часціцы: пры ўзаемадзеянні з полем часціцы атрымліваюць дадатковую энергію і ўзроўні энергіі «расшчапляюцца» (гл. Зеемана з’ява). Расшчапленне ўзроўняў энергіі часціц у знешнім эл. полі гл. ў арт. Штарка з’ява.

Л.М.Тамільчык.

т. 4, с. 319

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАМЕТРЫ́ЧНАЯ ІЗАМЕ́РЫЯ,

цыс-транс-ізамерыя, з’ява існавання малекул рознай прасторавай будовы пры аднолькавай паслядоўнасці і тыпе хім. сувязей у злучэнні; від прасторавай ізамерыі. З’яву геаметрычнай ізаметрыі растлумачыў Я.Х.вант Гоф (1874).

Геаметрычная ізаметрыя ўласцівая злучэнням з падвойнымі сувязямі (найчасцей С=С і С=N), вакол якіх немагчыма свабоднае вярчэнне атамаў, і цыклічным злучэнням з малымі (неараматычнымі) цыкламі. Магчыма, калі атам вугляроду пры падвойнай сувязі ці ў цыкле мае неаднолькавыя замяшчальнікі (групоўку атамаў тыпу RRC = CRR′), якія па-рознаму размешчаны адносна плоскасці падвойнай сувязі (гл. Кратныя сувязі) ці кольца ў цыклічных злучэннях. Існуюць 2 формы геам. ізамераў: цыс-ізамеры — аднолькавыя замяшчальнікі знаходзяцца па адзін бок ад плоскасці падвойнай сувязі (формула 1) ці кольца (формула 3), транс-ізамеры — па розныя бакі (формулы 2, 4). У цыклічных злучэннях адначасова з геаметрычнай ізаметрыяй магчыма і аптычная ізамерыя. Геам. ізамеры маюць розныя фіз. і хім. ўласцівасці. Цыс-ізамеры даволі лёгка (пад уздзеяннем святла, цяпла, хім. рэагентаў) пераходзяць у больш устойлівыя транс-ізамеры, напр., малеінавая кіслата. Геаметрычная ізамерыя ўласцівая і палімерам, напр., гутаперча (транс-поліізапрэн), каўчук натуральны (цыс-полііэалрэн).

Літ.:

Потапов В.М. Стереохимия. 2 изд. М., 1988.

М.Р.Пракапчук.

т. 5, с. 120

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАНЦУГО́ВЫЯ ХІМІ́ЧНЫЯ РЭА́КЦЫІ,

хімічныя рэакцыі, у якіх узнікненне прамежкавай актыўнай часціцы (атама, свабоднага радыкала, іона) і яе рэгенерацыя (узнаўленне) у кожным элементарным акце рэакцыі выклікаюць вялікую колькасць (ланцуг) пераўтварэнняў зыходных рэчываў у прадукты рэакцыі. Тыповыя Л.х.р. — тэрмічны крэкінг, піроліз, акісленне, радыкальная полімерызацыя, галагеніраванне.

Л.х.р. складаецца з некалькіх элементарных стадый: зараджэнне ланцуга (ініцыіраванне) — утварэнне актыўных часціц (АЧ), якое адбываецца, напр., у выніку дысацыяцыі малекул; працяг ланцуга — узаемадзеянне АЧ з зыходнымі рэчывамі, якое прыводзіць да ўтварэння малекул прадукту рэакцыі і новых АЧ; абрыў ланцуга («знікненне» АЧ) у выніку рэкамбінацыі свабодных радыкалаў, узаемадзеяння АЧ са сценкамі пасудзін ці з інгібітарамі. Адрозніваюць Л.х.р. неразгалінаваныя і разгалінаваныя. У неразгалінаваных на кожную АЧ, якая расходуецца пры працягу ланцуга, узнікае адна актыўная часціца, напр., рэакцыя хларыравання вадароду. Пры ініцыіраванні ўтвараецца свабодны атам хлору (Cl), які ўзаемадзейнічае з малекулай вадароду H2(Cl+H2 → HCl+H) з утварэннем малекулы хлорыстага вадароду HCl і свабоднага атама вадароду, які ўзаемадзейнічае з малекулай Cl2(H+Cl2 → HCl+Cl), і г.д. У разгалінаваных Л.х.р. на адну АЧ, расходаваную пры працягу ланцуга, узнікае некалькі АЧ (2 і больш), адна з іх працягвае першы ланцуг, а інш. пачынаюць новыя, што прыводзіць да разгалінавання. Калі скорасць разгалінавання меншая за скорасць знікнення АЧ, разгалінаваная Л.х.р. адбываецца ў стацыянарным рэжыме. Пры нестацыянарным рэжыме (скорасць знікнення АЧ меншая за скорасць разгалінавання) агульная скорасць ланцуговага працэсу імкліва ўзрастае. Пераход да нестацыянарнага рэжыму адбываецца скачком і разглядаецца як самазагаранне рэакцыйнай сумесі ці ланцуговы выбух. Значны ўклад у развіццё тэорыі Л.х.р. М.М.Сямёнава і С.Н.Хіншэлвуда. Гл. таксама Кінетыка хімічная.

Літ.:

Семенов Н.Н. О некоторых проблемах химической кинетики и реакционной способности. 2 изд. М., 1958;

Яго ж. Развитие теории цепных реакций и теплового воспламенения. М., 1969.

Дз.І.Мяцеліца.

т. 9, с. 127

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

А́ТАМНАЯ ФІ́ЗІКА,

раздзел фізікі, прысвечаны вывучэнню будовы і ўласцівасцяў атамаў, а таксама элементарных працэсаў, у якіх яны ўдзельнічаюць. У шырокім сэнсе атамная фізіка (субатамная фізіка) — фізіка мікраскапічных з’яў, якім характэрна перарыўнасць рэчыва і электрамагнітнага выпрамянення і якія падпарадкоўваюцца квантавым законам (гл. Элементарныя часціцы, Атам, Малекула, Фатон).

Гіпотэза, што матэрыя складаецца з атамаў як найменшых непадзельных і нязменных часціц, узнікла ў Стараж. Грэцыі ў 5—33 ст. да нашай эры. Дасканалыя ўяўленні пра атамістычную будову рэчыва склаліся значна пазней. У сярэдзіне 19 ст. дакладна вызначаны паняцці малекулы і атама. У канцы 19 ст. адкрыты электрон, рэнтгенаўскія прамяні і радыеактыўнасць, што дало магчымасць устанавіць складаную будову атама. Сучасную ядз. мадэль атама прапанаваў Э.Рэзерфард у 1911. Гэта мадэль і квантавыя ўяўленні М.Планка, А.Эйнштэйна і інш. далі магчымасць Н.Бору ў 1913 стварыць першую квантавую тэорыю атама і яго спектраў (гл. Бора тэорыя). У 1923 Л. дэ Бройль выказаў ідэю пра хвалевыя ўласцівасці часціц рэчыва, што было пацверджана эксперыментальна ў доследах па дыфракцыі электронаў у 1927 (гл. Дыфракцыя часціц).

Тэарэтычныя асновы атамнай фізікі закладзены ў 1925—28 працамі В.Гайзенберга, Э.Шродынгера, М.Борна, П.Дзірака і інш., у выніку чаго ўзніклі квантавая механіка і квантавая электрадынаміка. На гэтай аснове дадзена тлумачэнне вял. колькасці мікраскапічных з’яў і прадказаны шэраг эфектаў на атамна-малекулярным узроўні (гл. Атамныя спектры, Вымушанае выпрамяненне, Зонная тэорыя, Фотаэфект). Для апісання ўласцівасцяў элементарных часціц і іх узаемадзеянняў створана квантавая тэорыя поля. Развіццё атамнай фізікі прывяло да карэннага перагляду асн. уяўленняў і паняццяў фізікі мікраскапічных з’яў і ўзнікнення новых галін ведаў і тэхн. дастасаванняў, напрыклад квантавай электронікі, мікраэлектронікі, фізікі цвёрдага цела. На Беларусі даследаванні па атамнай фізіцы і сумежных навуках праводзяцца з канца 1950-х г. у ін-тах фіз. і фізіка-тэхн. профілю АН, БДУ, Бел. політэхн. акадэміі і інш.

Літ.:

Зубов В.П. Развитие атомистических представлений до начала XIX века. М. 1965;

Хунд Ф. История квантовой физики Киев, 1980;

Джеммер М. Эволюция понятий квантовой механики: Пер. с англ. М. 1985;

Ельяшевич М.А. Развитие Нильсом Бором квантовой теории атома и принципа соответствия // Успехи физ. наук. 1985. Т. 147, вып. 2.

М.А.Ельяшэвіч.

т. 2, с. 67

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАЛЕ́КУЛА (новалац. molecula, памяншальнае ад лац. moles маса),

найменшая ўстойлівая часціца рэчыва, якая мае ўсе яго хім. ўласцівасці і складаецца з аднолькавых (простае рэчыва) або розных (складанае рэчыва) атамаў. Атамы ў М. злучаны паміж сабой хімічнымі сувязямі. Якасны і колькасны састаў М. выражае формула хімічная, якая адначасова дазваляе вызначыць малекулярную масу. Парадак хім. сувязей у М. дае яе структурная ф-ла. Колькасць атамаў у М. розная: ад 2 (напр., у М. кіслароду O2) да сотняў тысяч (гл. Макрамалекула). Памеры М. залежаць ад колькасці атамаў у ёй і мяняюцца да 10​2 да 10​5 пм.

Прасторавае размяшчэнне атамаў у М. адпавядае мінімуму патэнцыяльнай энергіі М. і вызначае яе геам. будову і памеры. Напр., трохатамная М. вады H2O мае форму раўнабедранага трохвугольніка, у вяршыні якога знаходзіцца атам кіслароду, адлегласць паміж атамамі кіслароду і вадароду (даўж. сувязі O—H) 95,84 пм, а валентны вугал паміж сувязямі H—O—H 104,5°. М. — складаная сістэма, у якой электроны рухаюцца вакол ядраў паводле закону квантавай механікі. Пры злучэнні атамаў у М. іх унутр. электроны не мяняюць свайго руху, а вонкавыя (валентныя) — утвараюць электронную абалонку М., будова якой абумоўлівае характар хім. сувязей у М., рэакцыйную здольнасць хім. злучэння (гл. Рэакцыі хімічныя), магн. (гл. Дыямагнетызм, Парамагнетызм) і эл. ўласцівасці рэчыва. У эл. полі ўсе М. палярызуюцца (вонкавыя электроны М. зрушваюцца адносна ядраў); некат. М. маюць пастаянны дыпольны момант. У М. разам з рухам электронаў адбываецца вагальны рух — перыяд. адносны рух ядраў (разам з унутр. электронамі), у газавай фазе — таксама вярчальны рух усёй М. як цэлага. У адпаведнасці з магчымымі відамі руху поўная энергія М. (E) складаецца з электроннай (Eэл), вагальнай (Eваг) і вярчальнай (Eвярч) энергій: E = Eэл + Eваг + Eвярч. Звычайна Eэл ≫ Eваг ≫ Eвярч. Для кожнага віду руху паводле квантавых законаў дазволены толькі пэўныя (дыскрэтныя) значэнні энергіі (энергет. ўзроўні), пры гэтым электронныя энергет. ўзроўні размешчаны далёка адзін ад аднаго (розняцца на некалькі электронвольт), вагальныя — бліжэй (на дзесятыя і сотыя долі электронвольта), а вярчальныя яшчэ бліжэй (на сотыя — стотысячныя долі электронвольта). Квантавыя пераходы паміж энергет. ўзроўнямі М. суправаджаюцца вылучэннем ці паглынаннем аптычнага выпрамянення. Сукупнасць квантавых пераходаў М. вызначае малекулярныя спектры.

Літ.:

Татевский В.М. Строение молекул. М., 1977;

Флайгер У. Строение и динамика молекул: Пер. с англ. Т 1—2. М., 1982.

М.А.Ельяшэвіч, К.М.Салаўёў.

т. 10, с. 26

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)