АЗО́ТНЫЯ ЎГНАЕ́ННІ,

мінеральныя і арган. рэчывы, якія выкарыстоўваюцца для забеспячэння раслін азотам. Падзяляюцца на арганічныя ўгнаенні (гной, торф, кампост), якія акрамя азоту маюць у сабе інш. элементы, мінеральныя ўгнаенні (выпускаюцца прам-сцю ў цвёрдым ці вадкім стане) і зялёныя ўгнаенні (гл. Сідэрацыя). У мінеральных азот можа быць у аміячнай (NH3), аміячна-нітратнай (NH3 і NO3), нітратнай (NO3) і аміднай (NH2) формах. Асн. віды мінер. азотных угнаенняў: аміячныя, аманійныя, нітратныя, аманійна-нітратныя, амідныя, аманійна-нітратна-амідныя.

Аміячныя і аманійныя ўгнаенні: вадкі аміяк, аміячная вада, сульфаты амонію, амонію-натрыю. Раствараюцца ў глебавай вадзе, значная частка іонаў амонію звязваецца ў маларухомую форму, якая пад уздзеяннем спецыфічных бактэрый глебы пераходзіць у больш рухомую нітратную форму і засвойваецца раслінамі. Выкарыстоўваюцца для ўсіх с.-г. культур на някіслых глебах і кіслых пры іх выпнаванні. Нітратныя ўгнаенні: натрыевая і кальцыевая салетры. Іоны натрыю і кальцыю паглынаюцца цвёрдай фазай глебы і раслінамі спажываюцца менш, чым нітратны азот, што прыводзіць да падшчалочвання глебы. Выкарыстоўваюцца на ўсіх глебах для ўнясення перад сяўбой і для ўсіх відаў раслін у перыяд вегетацыі. Аманійна-нітратныя ўгнаенні: аміячная салетра, сумесі сульфат-нітрат амонію, вапнава-аміячная салетра. Выкарыстоўваюцца ў розных кліматычных зонах для розных глебаў. Амідныя ўгнаенні бываюць хутка дзейныя (карбамід) і павольна дзейныя (урэаформ—карбаміда-фармальдэгідныя ўгнаенні). Аманійна-нітратна-амідныя ўгнаенні — канцэнтраваныя растворы карбаміду, нітрату амонію і іх растворы ў аміячнай вадзе (аміякаты). Эфектыўныя пры ўнясенні ў глебу для падкормкі раслін, аміякаты — для невегетуючых с.-г. культур. На Беларусі (Гродзенскі азотна-тукавы завод) вырабляюць аміячную салетру, карбамід, вадкія ўгнаенні і сульфат амонію.

Літ.:

Агрохимия. М., 1982;

Баранов П.А., Алейнов Д.П., Олевский В.М. Азотные растворы... // Химия в сельском хозяйстве. 1983. № 5.

т. 1, с. 171

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

«ВІ́КІНГ»

(англ. Viking),

амерыканскія аўтаматычныя арбітальна-пасадачныя станцыі для даследавання Марса. Маса 3420 кт, выш. 4,9 м. Маюць арбітальны (для даследаванняў з каляпланетнай арбіты) і пасадачны (для даследаванняў у час спуску і на паверхні планеты) блокі.

«Вікінг-1» і «Вікінг-2», запушчаныя (адпаведна) 20.8.1975 і 9.9.1975, выйшлі на арбіты вакол Марса 19.6.1976 і 7.8.1976. Пасадачныя блокі зрабілі мяккую пасадку на паверхню планеты 20.7.1976 і 3.9.1976. Даследаванні з пасадачным блокам «Вікінга-2» закончыліся ў сак. 1980, «Вікінга-1» — у ліст. 1982. Упершыню атрыманы фотатэлевізійны відарыс паверхні Марса, здымкі планеты і яе спадарожнікаў Фобаса і Дэймаса; зроблены аналіз грунту (арган. рэчываў і прыкмет жыцця не выяўлена) і атмасферы планеты (выяўлены азот, вадзяная пара); атрыманы прыкметы пластоў вечнай мерзлаты.

Літ.:

Кондратьев К.Я «Викинги» на Марсе. Л., 1977.

т. 4, с. 153

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЗЫ ПРЫРО́ДНЫЯ ГАРУ́ЧЫЯ,

прыродныя сумесі вуглевадародаў метанавага рада (метан, этан, прапан і інш.), якія запаўняюць поры і пустоты горных парод, рассеяны ў глебе, раствораны ў нафце і пластавых водах. Падзяляюць на ўласна прыродныя газы, што залягаюць у пластах, якія не ўтрымліваюць нафты (маюць 93—98% метану); газы нафтавыя спадарожныя, газы газакандэнсатных радовішчаў, цвёрдыя газавыя гідраты (газагідратныя паклады).

Па колькасці цяжкіх вуглевадародаў (ад прапану і вышэй) прыродныя газы адносяць да т.зв. сухіх ці бедных газаў (менш за 50 г/м³), астатнія газы прыродныя гаручыя — да газаў сярэдняй тлустасці (50—150 г/м³) і тлустых (больш за 150 г/м³). Газы прыродныя гаручыя маюць таксама азот, вуглякіслы газ, серавадарод, некаторыя рэдкія газы (напр., гелій, аргон) і вадзяную пару. Выкарыстоўваюць як паліва (цеплата згарання 34,3 МДж/м³) і сыравіну ў вытв-сці аміяку, ацэтылену, вадароду, метанолу і інш. хім. рэчываў.

т. 4, с. 434

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАГЕНІЗА́ЦЫЯ

(ад лац. hydrogenium вадарод),

гідрыраванне, хімічны працэс далучэння вадароду (пераважна малекулярнага) да розных рэчываў у прысутнасці каталізатара пры высокай т-ры і ціску. У якасці каталізатараў найчасцей выкарыстоўваюць металы VIII гр. перыяд. сістэмы (напр., нікель, кобальт, плаціну, паладый), аксіды металаў (напр., аксід хрому Cr2O3, алюмінію Al2O3) і інш.

Гідрагенізацыяй азоту ў прам-сці атрымліваюць аміяк, аксіду вугляроду — метылавы спірт. Практычнае значэнне мае гідрагенізацыя арган. злучэнняў з кратнымі сувязямі. Далучэнне вадароду па падвойных сувязях (С=С) ляжыць у аснове ператварэння вадкіх алеяў і тлушчаў у цвёрдыя прадукты (напр., пры вытв-сці маргарыну). Гідрагенізацыя — адна з асн. рэакцый многіх працэсаў нафтаперапрацоўкі (напр., каталітычнага рыформінгу, гідракрэкінгу). Гідрагенізацыя можа адбывацца адначасова з гідрагенолізам: разрывам сувязі С—Х (Х — вуглярод, азот, сера, кісларод) у малекуле арган. злучэння пад уздзеяннем вадароду (напр., пры атрыманні шмататамных спіртоў з поліцукрыдаў).

Я.Г.Міляшкевіч.

т. 5, с. 223

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БАБО́ВЫЯ,

матыльковыя (Fabaceae, Leguminosae), сямейства двухдольных раслін з парадку бабовакветных. Каля 650 родаў, больш за 18 тыс. відаў. Пашыраны па ўсёй сушы зямнога шара. На Беларусі 20 родаў (найб. вядомыя баркун, вязель, гарох, гарошак, жаўтазель, зяновец, канюшына, куравай, лубін, люцэрна, пералёт, рабінія, рутвіца, чына, эспарцэт) і больш за 80 дзікарослых відаў. Рэдкія віды бабовых занесены ў Чырв. кнігу Беларусі.

Адна- і шматгадовыя травы, паўкусты і кусты, ліяны і дрэвы. Лісце пераважна чаргаванае, складанае, з прылісткамі. Кветкі найчасцей у гронка-, коласападобных і галоўчатых суквеццях, звычайна зігаморфныя. Плод — боб. На каранях бабовых утвараюцца клубеньчыкі, у якіх знаходзяцца бактэрыі, здольныя фіксаваць атм. азот. Тэхн., лек., харч., кармавыя, дэкар. і сідэратныя расліны; ёсць ядавітыя, якія маюць алкалоіды і выкарыстоўваюцца як лек. і інсектыцыдныя.

Літ.:

Флора СССР. Т. 11. М.; Л., 1945;

Тахтаджян А.Л. Система и филогения цветковых растений. М.; Л., 1966;

Яго ж. Система магнолиофитов. Л., 1987;

Флора Европейской части СССР. Т. 6. Л., 1987.

т. 2, с. 183

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГНОЙ,

1) у сельскай гаспадарцы арганічнае ўгнаенне з цвёрдых і вадкіх выдзяленняў жывёл з подсцілам або без яго. Мае азот, фосфар, калій, мікраэлементы, якія павышаюць біял. актыўнасць глебы. Выкарыстоўваюць гной цвёрды (на саламяным і тарфяным подсціле), паўвадкі і вадкі. Асабліва эфектыўны на дзярнова-падзолістых пясчаных і супясчаных глебах, дзе з’яўляецца крыніцай пажыўных рэчываў і меліяравальным сродкам, паляпшае аграхім. і фіз. ўласцівасці глеб на некалькі гадоў.

Хім. састаў і ўласцівасці гною залежаць ад віду жывёл, якасці кармоў і подсцілу, спосабаў яго прыгатавання і захоўвання. У сярэднім ад спажываных кармоў у гной пераходзяць каля 40% арган. рэчыва, 50—70% азоту, 80% фосфару, да 90% калію. Конскі і авечы гной мае больш пажыўных рэчываў, чым свіны і буйн. раг. жывёлы. Гной зберагаюць у гнаясховішчах. Выкарыстоўваюць ў чыстым выглядзе, як тарфагнойныя кампосты разам з мінер. ўгнаеннямі.

2) У медыцыне адзін з відаў запаленчага выпату (эксудату), непрыемная на пах густая вадкасць жоўтага або шэрага колеру, якая ўтвараецца ў тканках арганізма пры іх запаленні.

т. 5, с. 316

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЗАВЫ ЛА́ЗЕР,

лазер з газападобным актыўным рэчывам. Актыўнае рэчыва (газ) змяшчаецца ў аптычны рэзанатар або прапампоўваецца праз яго. Інверсія заселенасці ўзроўняў энергіі (гл. Актыўнае асяроддзе) дасягаецца ўзбуджэннем атамаў дапаможнага рэчыва (напр., гелій, азот) і рэзананснай перадачай узбуджэння атамам рабочага рэчыва (неон, вуглякіслы газ). Паводле тыпу актыўнага рэчыва адрозніваюць атамарныя, іонныя і малекулярныя газавыя лазеры. Атрымана генерацыя пры выкарыстанні 44 актыўных атамарных асяроддзяў, іх іонаў з рознай ступенню іанізацыі, а таксама больш за 100 малекул і радыкалаў у газавай фазе. Газавыя лазеры маюць больш высокую монахраматычнасць, стабільнасць, кагерэнтнасць і накіраванасць выпрамянення ў параўнанні з лазерамі інш. тыпаў. Выкарыстоўваюцца ў метралогіі, галаграфіі, медыцыне, аптычных лініях сувязі, матэрыялаапрацоўцы (рэзка, зварка), лакацыі, фіз. даследаваннях, звязаных з атрыманнем і вывучэннем высокатэмпературнай плазмы і інш.

Для ўзбуджэння актыўнага рэчыва газавыя лазеры выкарыстоўваюць электрычныя разрады ў газах, пучкі зараджаных часціц, аптычную, хім. і ядз. пампоўку, цеплавое ўзбуджэнне, а таксама газадынамічныя метады і метады перадачы энергіі ў газавых сумесях. Найб. пашыраным атамарным газавым лазерам з’яўляецца гелій-неонавы лазер (магутнасць генерацыі да 100 мВт), які мае найвышэйшую стабільнасць параметраў генерацыі, надзейнасць і даўгавечнасць. Найб. магутная генерацыя іонных газавых лазераў атрымана на іонах аргону (да 500 Вт у неперарыўным рэжыме). Малекулярныя лазеры з’яўляюцца найб. магутнымі, напр. газавы лазер на вуглякіслым газе мае магутнасць да 1 МВт у неперарыўным рэжыме.

Першы газавы лазер на сумесі неону і гелію створаны ў 1960 амер. фізікамі А.Джаванам, У.Р.Бенетам і Д.Эрыятам. На Беларусі распрацоўкай і даследаваннем газавых лазераў займаюцца ў ін-тах фізікі, цепла- і масаабмену, фіз.-тэхн., малекулярнай і атамнай фізікі АН, НДІ прыкладных фіз. праблем пры БДУ, Гродзенскім ун-це і БПА.

Літ.:

Войтович А.П. Магнитооптика газовых лазеров. Мн., 1984;

Орлов Л.Н. Тепловые эффекгы в активных средах газовых лазеров. Мн., 1991;

Солоухин Р.И., Фомин Н.А. Газодинамические лазеры на смешении. Мн., 1984.

Л.М.Арлоў.

т. 4, с. 426

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРГАНІ́ЧНАЯ ХІ́МІЯ,

галіна хіміі, якая вывучае злучэнні вугляроду з інш. элементамі (арганічныя злучэнні) і іх ператварэнні. Займаецца сінтэзам і вызначэннем структуры арган. злучэнняў, вывучэннем сувязі хім. будовы рэчываў з рэакц. здольнасцю і фіз. ўласцівасцямі, практ. выкарыстаннем. Падзяляецца на стэрэахімію, хімію высокамалекулярных злучэнняў, прыродных рэчываў (антыбіётыкаў, вітамінаў, гармонаў і інш.), металаарган., фторарган., комплексных злучэнняў, фарбавальнікаў. Цесна звязана з біяхіміяй, медыцынай, біялогіяй, арган. геахіміяй, малекулярнай біялогіяй і інш. галінамі навук.

З’явілася ў пач. 19 ст. ў выніку абагульнення ведаў пра ўласцівасці рэчываў жывёльнага і расліннага паходжання і ўяўленняў таго часу аб жыццёвай сіле (vis vitalis), якая быццам бы стварае арган. рэчывы толькі ў жывых арганізмах. Тэрмін «арганічная хімія» ўведзены Ё.Берцэліусам (1827). Сінтэз мачавіны (Ф.Вёлер; 1828), аніліну (М.М.Зінін; 1842), воцатнай кіслаты (А.Кольбе; 1845), рэчываў тыпу тлушчаў (П.Бертло; 1854), цукрыстага рэчыва (А.М.Бутлераў; 1861) паказаў магчымасць штучнага атрымання арган. рэчываў. З 2-й чвэрці 19 ст. пачалі развівацца тэарэт. ўяўленні арганічнай хіміі, у т. л. тэорыя радыкалаў (Ю.Лібіх, Вёлер, Э.Франкленд, Р.Бунзен), тэорыя тыпаў (Ж.Дзюма, Ш.Жэрар і О.Ларан), паняцце пра валентнасць хім. элементаў, чатырохвалентнасць вугляроду і здольнасць яго атамаў ствараць складаныя малекулы. Абгрунтаваная ў 1861 Бутлеравым хімічнай будовы тэорыя прапанавала існаванне сувязі паміж будовай і ўласцівасцямі арган. злучэнняў, растлумачыла з’яву прасторавай ізамерыі арган. злучэнняў. А.Кекуле ў 1865 створана тэорыя будовы араматычных злучэнняў (на прыкладзе бензолу); у 1874 Я.Вант-Гоф і Ж.Ле Бель заклалі асновы стэрэахіміі, вылучылі аптычную ізамерыю і геаметрычную ізамерыю арган. рэчываў. Развіццё арганічнай хіміі ў пач. 20 ст. звязана з дасягненнямі квантавай фізікі і электронных тэорый хім. сувязі. Вызначаны тыпы хім. сувязі; Г.Льюіс, В.Косель, К.Інгалд, Л.Полінг распрацавалі і дапоўнілі ўяўленнямі квантавай хіміі і квантава-хімічнымі разлікамі электронную тэорыю будовы арган. злучэнняў, прадказалі і растлумачылі арганічнай хіміі рэакцыйную здольнасць. У 2-й пал. 20 ст. пачалося станаўленне фізічнай арганічнай хіміі, у якой абагульнены ўяўленні па механізмах рэакцый і сувязі паміж структурай арган. злучэнняў і іх рэакц. здольнасцю; шырокае выкарыстанне ў даследаваннях храматаграфіі, рэнтгенаскапіі, масспектраскапіі, метадаў ЭПР, ЯМР, ІЧ- і УФ-спектраскапіі. Сінтэзаваны новыя класы крэмнійарган. злучэнняў (полісілаксаны), поліаміды (нейлон), фторпалімеры (тэфлон), цэнавыя злучэнні пераходных металаў (ферацэн), фізіялагічна актыўныя злучэнні, лекавыя прэпараты, атрутныя рэчывы, сродкі аховы раслін, антыпірэны. Метады арганічнай хіміі разам з фіз. метадамі даследавання выкарыстоўваюцца ў вызначэнні будовы нуклеінавых кіслотаў, бялкоў, складаных прыродных злучэнняў, з дапамогай матэм. мадэлявання ажыццяўляецца мэтанакіраваны сінтэз арган. рэчываў з зададзенымі ўласцівасцямі. Магчымасці арганічнай хіміі дазволілі сінтэзаваць хларафіл, вітамін B12 (Р.Вудварт), полінуклеатыды (А.Тод), распрацаваць аўтаматызаваны сінтэз ферментаў. Сучаснае дасягненне арганічнай хіміі ў геннай інжынерыі — сінтэз актыўнага гена (Х.Каран; 1976). Выкарыстанне дасягненняў арганічнай хіміі прывяло да стварэння тэхналогій вытв-сці сінт. каўчукаў, пластычных масаў, сінт. валокнаў, фарбавальнікаў, кінафотаматэрыялаў, атрутных рэчываў, сродкаў аховы раслін, духмяных рэчываў, лек. прэпаратаў.

На Беларусі даследаванні па арганічнай хіміі пачаліся ў 1924 у БДУ і вядуцца ў ін-тах фізіка-арган. і біяарган. хіміі АН, БДУ, Бел. тэхнал. ун-це, с.-г., мед. і інш. НДІ. Сінтэзаваны і вывучаны ператварэнні металаарган., поліхлорарган., пераксідных злучэнняў, ацыклічных і гетэрацыклічных злучэнняў, стэроідаў, гетэрастэроідаў, простагландзінаў, нуклеатыдаў, тэрпеноідаў. Буйнейшыя прадпрыемствы: ВА «Палімір» (г. Наваполацк), ВА «Азот» (г. Гродна), Магілёўскі камбінат сінт. валокнаў.

Літ.:

Несмеянов А.Н., Несмеянов Н.А. Начала органической химии. Кн. 1—2. 2 изд. М., 1974;

Нейланд О.Я. Органическая химия. М., 1990.

К.Л.Майсяйчук.

т. 1, с. 467

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЗАВАЯ ПРАМЫСЛО́ВАСЦЬ,

галіна паліўна-энергетычнага комплексу, якая ўключае разведку, распрацоўку і эксплуатацыю радовішчаў газаў прыродных, вытв-сць штучных газаў, комплексную перапрацоўку, транспарціроўку па магістральных газаправодах, захоўванне, пастаўку розным галінам прам-сці і для камунальна-быт. гаспадаркі. Газ выкарыстоўваецца як крыніца энергіі і хім. сыравіна. Значная колькасць яго спажываецца ў хім., металургічнай, маш.-буд. прам-сці, у буд. індустрыі. На газаперапрацоўчых з-дах з прыроднага газу (у т. л. і са спадарожнага пры здабычы нафты) атрымліваюць газавы кандэнсат, які выкарыстоўваецца як паліва для рухавікоў (стабільны кандэнсат) і як хім. сыравіна, сухі і звадкаваны газ, сыравіну для вытв-сці азотных угнаенняў і інш.

Выкарыстанне прыродных гаручых газаў («вечных агнёў») вядома са стараж. часоў у Дагестане, Азербайджане, Іране і інш. краінах. Газавая прамысловасць пачала фарміравацца ў канцы 18 — пач. 19 ст., калі газ сталі выкарыстоўваць для асвятлення вуліц і памяшканняў. У 1-й пал. 19 ст. з’явіліся ўстаноўкі для выпрацоўкі штучнага газу — газагенератары. Газ атрымлівалі з вугалю, асабліва пашырылася яго вытв-сць пры вырабе коксу. Здабыча прыроднага газу пачалася ў 2-й пал. 19 ст. (1870, ЗША). З сярэдзіны 19 ст. прыродныя газы выкарыстоўваюцца як тэхнал. паліва.

Асновай сучаснай газавай прамысловасці з’яўляецца прыродны газ, вытв-сць штучнага газу з вугалю і сланцаў не расце, у невял. аб’ёме газ атрымліваюць метадам падземнай газіфікацыі вугалю. У свеце здабываецца каля 2,1 трлн. м³ прыроднага газу (1993). Найб. запасы маюць: краіны б. СССР — Расія, Туркменія, Узбекістан, Азербайджан і інш. (больш за 17 трлн. м³, самыя вял. Астраханскае радовішча, Газлінскае радовішча, Урэнгойскае радовішча, Ямбургскае радовішча і інш.); Іран (10,5 трлн. м³, буйное радовішча Ахваз, Персідскага заліва нафтагазаносны басейн і інш.); ЗША (5,6 трлн. м³, Ілінойскі нафтагазаносны басейн, Каліфарнійскія нафтагазаносныя басейны, Паўночнай Аляскі нафтагазаносны басейн і інш.); Алжыр (3,2 трлн. м³, Алжыра-Лівійскі нафтагазаносны басейн); Канада (2,6 трлн. м³, радовішча Пембіна і інш.); Мексіка (2,2 трлн. м³, Мексіканскага заліва нафтагазаносны басейн); Саудаўская Аравія (2 трлн. м³, Сафанія); Нідэрланды (1,6 трлн. м³, Паўночнага мора нафтагазаносная вобласць, усе даныя на пач. 1980-х г.). Пра буйнейшых вытворцаў газу гл. ў табл. 1. <TABLE>

Транспарціроўка газу ад радовішча да спажыўца ажыццяўляецца па магістральных газаправодах (з дапамогай устаноўленых на іх газаперапамповачных агрэгатаў), агульная працягласць якіх у свеце 750 тыс. км (канец 1970-х г.), а водным шляхам — спец. танкерамі метанавозамі-газавозамі. Найб. агульную працягласць газатрансп. сістэм маюць ЗША (442 тыс. км), самыя працяглыя сістэмы ў краінах СНД — шматнітачная Урэнгой—Ухта—Таржок—Мінск—Івацэвічы—Даліна (11 тыс. км) і ў Паўн. Амерыцы Аляска—Канада—ЗША (7,7 тыс. км). Захоўваецца газ у наземных (газгольдэры), паверхневых падземных (участкі газаправодаў з павышаным ціскам) і падземных сховішчах. Найб. выкарыстоўваюцца падземныя сховішчы, якія ствараюць у выпрацаваных газавых ці нафтавых радовішчах (газ запампоўваюць праз свідравіны ў спустошаны прадуктыўны пласт).

На Беларусі газавая прамысловасць развіваецца з 1960-х г. на базе прывазнога прыроднага газу (пасля будаўніцтва магістральнага газаправода Дашава—Мінск). Адзінае Старасельскае радовішча прыроднага газу не распрацоўваецца. У 1995 даўжыня магістральных газаправодаў склала 5534 км. Здабываецца спадарожны газ на нафтавых промыслах. Для яго перапрацоўкі пабудаваны Беларускі газаперапрацоўчы завод. Дынаміку выкарыстання газу ў газавай прамысловасці Беларусі гл. ў табл. 2. <TABLE>

Прыродны газ паступае з Расіі па газаправодзе Таржок—Мінск—Івацэвічы—Кобрын. У 1995 імпартавана 14 млрд. м³ — амаль увесь спажываны газ. Прыродны газ у эканоміцы Беларусі выкарыстоўваецца для атрымання электраэнергіі, як паліва і хім. сыравіна (напр., на ВА «Азот» у Гродне для выпрацоўкі азотных тукаў), спадарожны пасля перапрацоўкі ідзе на паліва на Светлагорскай ЦЭЦ і ў кватэрах Рэчыцы і Светлагорска.

С.М.Зайцаў.

т. 4, с. 425

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АТМАСФЕ́РА (ад грэч. atmos пара + сфера) Зямлі, газавая абалонка вакол Зямлі, якая ўтрымліваецца яе прыцяжэннем, верціцца разам з ёю і забяспечвае жыццядзейнасць расліннага і жывёльнага свету. Маса атмасферы каля 5,15×10​15 т (адна мільённая доля масы Зямлі). Палавіна яе заключана ў слоі да 5 км, 90% — да 16 км, вышэй за 100 км — толькі мільённая частка. Выразнай верхняй мяжы не існуе, атмасфера паступова пераходзіць у касм. прастору (гл. Космас). За фіз. мяжу прымаюць выш. 1000—1200 км, тэарэтычная мяжа — 42 тыс. км, дзе цэнтрабежная сіла вярчэння Зямлі ўраўнаважваецца яе прыцяжэннем. З вышынёй мяняюцца фіз. ўласцівасці атмасферы: ціск, шчыльнасць, т-ра. Ціск атмасферы на ўзр. м. на 1 см² 1013,25 гПа, на выш. 5 км ён змяншаецца на ½. Залежнасць ціску ад вышыні выражаецца бараметрычнай формулай. Шчыльнасць паветра на ўзр. м. 1,27—1,30 кг/м³, на паверхні Зямлі ў Еўропе ў сярэднім 1,25 кг/м³, на выш. 20 км 0,087 кг/м³, на выш. 750 км менш за 10-13 кг/м³. Т-ра характарызуецца больш складанай залежнасцю ад вышыні.

Будова. Атмасфера мае выразную слаістую структуру. У аснову падзелу пакладзена вертыкальнае размеркаванне т-ры, паводле якога вылучаюць сферы і слаі-паўзы паміж імі. Ніжняя частка атмасферы — трапасфера, знаходзіцца над паверхняй Зямлі да выш. 8—10 км у палярных, 16—18 км у экватарыяльных шыротах. Характарызуецца паніжэннем т-ры з вышынёй каля 6,5 °C на 1 км. Пераходнаму слою (таўшчынёй ад соцень метраў да 2 км) паміж трапасферай і стратасферайтрапапаўзе — уласціва ізатэрмія. Стратасфера распасціраецца да 50 км, у ніжняй частцы яе т-ра пастаянная, з выш. 25—30 км павышаецца ў сярэднім на 0,3 °C на 100 мазанасферы). Паміж стратасферай і мезасферай размяшчаецца стратапаўза, у якой т-ра блізкая да 0 °C. У мезасферы (да выш. 80 км) т-ра зніжаецца на 0,35 °C на 100 м вышыні (да -90 °C), развіваецца канвекцыя (вертыкальнае перамешванне), утвараюцца серабрыстыя воблакі. У мезасферы адзначаецца іанізацыя часцінак газу. Мезапаўза знаходзіцца на выш. 80—85 км, ёй уласціва ізатэрмія ці слабае зніжэнне т-ры. Вышэй размешчана тэрмасфера (да 800—1000 м), дзе т-ра зноў рэзка павышаецца за кошт паглынання прамога сонечнага выпрамянення і дасягае 1500—2000 °C. Тэрмасфера адпавядае іанасферы, дзе паветра моцна іанізаванае ў выніку дысацыяцыі малекул газаў пад уздзеяннем ультрафіялетавай, рэнтгенаўскай і карпускулярнай радыяцыі, што з’яўляецца прычынай высокай т-ры, палярных ззянняў, свячэння атмасферы. Знешняя атмасфера — экзасфера, дзе адбываецца дысіпацыя газаў, іх часцінкі (пераважна атамы вадароду) рассейваюцца ў касм. прасторы і ўтвараюць карону Зямлі.

Састаў. Атмасфера паветра — сумесь газаў з дамешкам завіслых цвёрдых і вадкіх часцінак. Паводле хім. саставу вылучаюць гамасферу (да 90—100 км) з нязменнымі суадносінамі асн. газаў і гетэрасферу, дзе стан газаў і іх суадносіны вельмі зменлівыя. У сухім паветры гамасферы азот складае 78%, кісларод — 21, аргон — 0,9, вуглякіслы газ — 0,03%, астатняе — крыптон, ксенон, неон, гелій, вадарод, азон, ёд, радон, метан, аміяк і інш. Сучасны састаў атмасферы спрыяльны для жыцця на Зямлі: кісларод служыць для дыхання жывых арганізмаў, вуглякіслы газ — для стварэння арган. рэчываў раслін у працэсе фотасінтэзу. У фіз. працэсах, якія адбываюцца ў атмасферы, найб. актыўныя вадзяная пара, азон, вуглякіслы газ і атм. аэразолі. Вадзяная пара канцэнтруецца ў ніжніх слаях трапасферы (ад 0,1—0,2% у палярных шыротах да 3% у экватарыяльных), з вышынёй яе колькасць памяншаецца (на выш. 1,5—2 км на 50%), у нязначнай колькасці ёсць да выш. 15—20 км. Азон затрымлівае асн. частку ультрафіялетавага выпрамянення Сонца, гібельнага для ўсяго жывога на Зямлі. Канцэнтруецца ў азанасферы. Вуглякіслы газ здольны паглынаць даўгахвалевае выпрамяненне Зямлі і ствараць парніковы эфект атмасферы. Колькасць вуглякіслага газу павялічваецца ў сувязі з узмацненнем антрапагеннага ўздзеяння на атмасферу (мяркуюць, што да 2000 г. яго будзе 0,0375%). Атмасферныя аэразолі (завіслыя ў паветры цвёрдыя і вадкія часцінкі) таксама затрымліваюць цеплавое выпрамяненне паверхні Зямлі і ўплываюць на бачнасць у атмасферы. Прымеркаваныя да прыземных слаёў, частка іх пранікае ў стратасферу, дзе на выш. 15—20 км утвараецца аэразольны слой Юнге.

У гетэрасферы павялічваецца колькасць лёгкіх газаў, адбываецца дысацыяцыя малекул паветра і значная іанізацыя. Выразная змена стану газаў атмасферы адбываецца на выш. 100—210 км, дзе пераважае атамарны кісларод над малекулярнымі азотам і кіслародам. На выш. 500 км малекулярнага кіслароду практычна няма, вышэй за 600 км пераважае гелій, на выш. ад 2 да 20 тыс. км пашырана вадародная карона Зямлі. З верхняй часткай атмасферы звязаны радыяцыйныя паясы Зямлі: унутраны на выш. 500—1600 км і вонкавы, утвораныя электронамі з высокай энергіяй.

Паветраныя плыні. Вынікам неаднароднасці т-ры атмасферы па вертыкалі і нераўнамернага награвання палярных і экватарыяльных шырот, сухазем’я і мора з’яўляецца сістэма буйнамаштабных працэсаў — агульная цыркуляцыя атмасферы. Да яе належаць плыні ніжняй часткі трапасферы: пастаянныя — пасаты і сезонныя — мусоны, заходні перанос паветраных мас, канвекцыя, цыклоны і антыцыклоны і інш. Паблізу трапапаўзы, дзе існуе кантрастнасць т-ры, а таксама ў азонавым слоі на выш. 20—25 км утвараюцца магутныя струменныя плыні. Скорасць ветру ў верхняй стратасферы дасягае 100—150 м/сек. У тэрмасферы яна павялічваецца, тут адбываюцца прыліўныя рухі пад уздзеяннем Месяца і Сонца. Рухомасць атмасферы надае ёй ролю рэгулятара цеплаабмену Зямлі з космасам, радыяцыйнага і воднага балансу. Працэсы ўзаемадзеяння атмасферы і акіяна істотна ўплываюць на клімат Зямлі. Атмасфера мае электрычнае поле, якое фарміруецца пад уздзеяннем адмоўнага электрычнага поля Зямлі.

Паходжанне. Сучасная зямная атмасфера мае другаснае паходжанне, яна ўтварылася пасля ўзнікнення Зямлі ў выніку ўзаемадзеяння працэсу дэгазацыі з пародамі літасферы. Састаў атмасферы зменьваўся на працягу ўсёй гісторыі Зямлі, у тым ліку і пад уплывам дзейнасці чалавека. Вылучаюць 2 асн. этапы — бескіслародны (2 млрд. гадоў назад) і кіслародны; маса кіслароду значна павялічылася ў фанеразоі пасля з’яўлення расліннасці на сушы.

Вывучэнне атмасферы пачалося ў антычны час. Навука пра атмасферу — метэаралогія сфарміравалася ў 19 ст. Для назіранняў за атмасферай створана сетка метэаралагічных станцый і пастоў, выкарыстоўваюцца метады вертыкальнага зандзіравання атмасферы, радыёлакацыя, пеленгацыя, самалёты, аўтам. аэрастаты, спец. судны, ракеты і метэаралагічныя спадарожнікі. У Беларусі назіранне за атмасферай праводзіцца на метэастанцыях гідраметэаралагічнай службы, у прамысл. цэнтрах вывучаюць і прагназіруюць ступені тэхнагеннага забруджвання; праводзяцца даследаванні радыенукліднага забруджвання атмасферы пасля катастрофы на Чарнобыльскай АЭС.

Літ.:

Атмосфера: Справ. Л., 1991;

Будыко М.И., Ронов А.Б., Яншин А.Л. История атмосферы. Л., 1985;

Бримблкумб П. Состав и химия атмосферы: Пер. с англ. М., 1988.

Г.В.Валабуева.

т. 2, с. 74

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)