ГЕАХІ́МІЯ

(ад геа... + хімія),

навука аб хім. саставе Зямлі, пашырэнні, размеркаванні і міграцыі хім. элементаў і іх ізатопаў у геасферах; частка касмахіміі. Даследуе колькасць і размеркаванне хім. элементаў і іх ізатопаў у мінералах, горных пародах, рудах, прыродных водах і газах, жывых арганізмах, зямной кары, мантыі і Зямлі цалкам, касм. аб’ектах, а таксама геахімічныя працэсы.

Падзяляецца на агульную геахімію, бія-, гідра-, газа- (атма-), літа-, радыегеахімію, геахімію ландшафтаў, глеб, магматычных, асадкавых, гідратэрмальных, гіперагенных працэсаў, асобных хім. элементаў, ізатопаў, арганічную, рэгіянальную, аналітычную, геахімію тэхнагенезу і інш. Цесна звязана з мінералогіяй, крышталяхіміяй, петралогіяй, геалогіяй карысных выкапняў, тэктонікай, геафізікай і інш. Геахім. даследаванні шырока выкарыстоўваюцца пры пошуках карысных выкапняў, рашэнні практычных задач сельскай гаспадаркі і рацыянальнага прыродакарыстання, у медыцыне, ахове навакольнага асяроддзя. Звесткі пра хім. склад прыродных аб’ектаў назапашваліся да канца 19 ст. дзякуючы працам Л.Элі дэ Бамона (Францыя), Г.Бішафа (Германія), Р.Бойля (Вялікабрытанія), І.Я.Берцэліуса (Швецыя) і інш. Ролю геахім. працэсаў у геалогіі падкрэслівалі М.В.Ламаносаў, Дз.І.Мендзялееў, В.М.Севяргін, А.Гумбальт. Тэрмін «геахімія» ўвёў у 1838 ням. вучоны К.Ф.Шонбайн. У 1889 амер. вучоны Ф.Кларк вылічыў сярэднія колькасці элементаў у зямной кары, якія атрымалі назву кларкі. Як навука геахімія аформілася ў 1-й пал. 20 ст. Яе заснавальнікі: У.І.Вярнадскі, В.М.Гольдшміт, А.Я.Ферсман. Вял. ўклад у развіццё геахіміі зрабілі А.П.Вінаградаў, А.А.Саўкаў, В.У.Кавальскі (Расія), К.Ранкама, Т.Сахама (Японія) і інш.

На Беларусі геахім. даследаванні арганізаваны ў 1953 К.І.Лукашовым у БДУ, з 1957 у АН Беларусі. Сучасныя цэнтры даследаванняў — Ін-т геал. навук Нац. АН (К.І. і В.К.Лукашовы, У.А.Кузняцоў, В.М.Шчарбіна, А.С. і А.А.Махначы, Г.В.Багамолаў, А.В.Кудзельскі, А.М.Пап, І.В.Найдзянкоў), Бел. НДІ глебазнаўства і аграхіміі (Т.Н.Кулакоўская, С.Н.Іваноў), Ін-т праблем выкарыстання прыродных рэсурсаў і экалогіі (В.Б.Кадацкі і інш.), БДУ (І.С.Лупіновіч, Я.П.Пятраеў) і інш. Геахім. вывучэнне тэр. Беларусі накіравана на пашырэнне мінер.-сыравіннай базы, ацэнку геаэкалагічных умоў і змяншэнне наступстваў катастрофы на Чарнобыльскай АЭС.

У.А.Кузняцоў.

т. 5, с. 126

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАСЦІ́НІЦА,

будынак са спецыялізаванымі памяшканнямі для часовага пражывання асоб, якія прыязджаюць у населены пункт.

Гасцініцы адрозніваюцца: па прызначэнні — агульнага тыпу, ведамасныя, атэлі, бізнес-атэлі, турысцкія для аўтатурыстаў, матэлі, кемпінгі, курортныя, спарт., для транзітных пасажыраў (пры вакзалах); па ўмяшчальнасці — малыя (да 100 месцаў), сярэднія (100—500 месцаў) і вялікія (больш за 500 месцаў); залежна ад узроўню камфорту — «люкс», вышэйшы (А, Б), 1-, 2-, 3- і 4-разрадныя, на захадзе — па колькасці «зорак» — 3-, 4-, 5-зоркавыя гасцініцы; паводле рэжыму эксплуатацыі (круглагадовыя, сезонныя); па месцы знаходжання (горад, пасёлак, курорт і г.д.). У складзе гасцініцы вылучаюць памяшканні: жылыя (нумары), прыёму, сервісу, грамадскага харчавання (кавярня, рэстаран), адм., гаспадарчыя. Пры высокакамфартабельных гасцініцах ёсць памяшканні культ.-масавыя (канцэртныя, выставачныя, канферэнц-залы, б-кі), спарт. аздараўленчыя (басейны, сауны, кегельбаны). Гасцініца ўзнікла ў глыбокай старажытнасці. У Еўропе ролю гасцініцы выконвалі харчэўні, аўстэрыі, заезныя дамы, корчмы; у краінах Пярэдняга Усходу, Сярэдняй Азіі, Закаўказзя — караван-сараі (9—14 ст.). На Беларусі паходзяць ад гасцінага двара.

У 2-й пал. 19 — пач. 20 ст. пераважалі невялікія гасцініцы (5—20 месцаў, сярод іх вылучаліся памерамі «Парыж» у Магілёве, «Еўропа» ў Мінску). У 1930—40-я г. ўзведзены гасцініцы «Свіслач», Бел. ваен. акругі (1941, арх. Г.Якушка) у Мінску, «Дняпро» ў Магілёве і інш. Развіццё культ.-гасп. сувязей, турызму абумовіла буд-ва буйных гасцініц: «Мінск» (арх. Г.Баданаў, Г.Сысоеў, у сааўт.), «Планета», «Кастрычніцкая», «Беларусь» у Мінску, «Гродна» ў Гродне, «Сож» (арх. В.Бурлака) у Гомелі, «Маладзечна» (арх. Крывашэеў) у Маладзечне і інш. Будынкі гасцініц у меншых гарадах (Баранавічы, Ліда, Масты) і сельскай мясцовасці (в. Верцялішкі Гродзенскай вобл.) уваходзяць у склад грамадскіх цэнтраў. Сучасныя гасцініцы вызначаюцца буйнымі пластычнымі арх. формамі, высокім узроўнем вонкавай і ўнутр. аддзелкі. У маст. вырашэнні фасадаў і інтэр’ераў значнасць набывае сінтэз архітэктуры, скульптуры, жывапісу. У 1997 на Беларусі 251 гасцініца на 25 904 месцы (акрамя гасцініц для турыстаў і экскурсій).

В.І.Анікін.

т. 5, с. 86

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАЛЕ́НТНАСЦЬ

(ад лац. valentia сіла),

здольнасць атама хім. элемента ўтвараць пэўную колькасць хімічных сувязяў з інш. атамамі. Паняцце «валентнасць» увёў англ. хімік Э.Франкленд (1853). Велічыня валентнасці атама хім. элемента вызначаецца колькасцю атамаў вадароду (прынята лічыць аднавалентным), якія ён далучае пры ўтварэнні гідрыдаў (злучэнні з вадародам). Напр., атам хлору далучае 1 атам вадароду (хлорысты вадарод HCl), атам кіслароду — 2 атамы (вада H2O), таму валентнасць хлору і кіслароду ў гэтых злучэннях адпаведна 1 і 2. Паняцце «валентнасць» атрымала развіццё ў квантава-хім. тэорыі хім. сувязі. Паводле гэтай тэорыі велічыня валентнеасці атама (спін-валентнасць) вызначаецца колькасцю электронных пар, якія фарміруюцца пры ўтварэнні хім. сувязяў паміж дадзеным і інш. атамамі за кошт абагульнення іх электронаў з няспаранымі спінамі. Электроны атама, якія могуць удзельнічаць у фарміраванні агульных электронных пар, наз. валентнымі (электроны вонкавых электронных слаёў). У атамах элементаў з недабудаваным перадапошнім слоем (напр., у атамаў жалеза Fe, марганцу Mn, вальфраму W) валентнымі могуць быць і некаторыя электроны гэтага слоя. Многія элементы маюць пераменную валентнасць (напр., у серавадародзе H2S, аксідах SO2 і SO3 валентнасць серы адпаведна 2, 4, 6).

Валентнасць вызначаецца толькі колькасцю кавалентных сувязяў. Для злучэнняў з іоннай сувяззю выкарыстоўваецца паняцце акіслення ступень, якая колькасна роўная валентнасці, але дадаткова характарызуецца дадатным ці адмоўным знакам. У комплексных злучэннях і іонных крышталях каардынацыйны лік атамаў (іонаў) перавышае велічыню спін-валентнасці, таму карыстаюцца паняццем каардынацыйнай валентнасці, якая колькасна роўная суме спін-валентнасці і колькасці атамаў (іонаў), дадаткова звязаных з валентнанасычаным атамам. Напр., у комплексным злучэнні гексафтораалюмінат (III) натрыю Na3[AlF6] спін-валентнасць атама алюмінію 3, ступень акіслення +3, але пры ўтварэнні злучэння з AlF3 і NaF атам валентнанасычанага Al дадаткова хімічна звязваецца з 3 іонамі F​-, таму каардынацыйная валентнасць алюмінію ў гэтым злучэнні 6. Гл. таксама Комплексныя злучэнні, Малекула, Крышталі.

Літ.:

Чаркин О.П. Проблемы теории валентности, химической связи, молекулярной структуры. М., 1987.

В.В.Свірыдаў.

т. 3, с. 479

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРЫФМЕ́ТЫКА

(ад грэчаскага arithmos лік),

навука, галоўны аб’ект якой цэлыя, рацыянальныя лікі і дзеянні над імі. Узнікла ў старажытныя часы з практычных патрэб чалавека лічыць і вымяраць. Для падліку вялікай колькасці аб’ектаў створаны сістэмы лічэння. Найбольш зручная дзесятковая сістэма лічэння; існуюць таксама сістэмы лічэння з асновамі 5, 12, 20, 40, 60 і нават 11 (Новая Зеландыя). З пашырэннем вылічальнай тэхнікі выкарыстоўваецца двайковая сістэма лічэння.

Да пачатку нашай эры былі атрыманы дастаткова глыбокія вынікі: даказана бесканечнасць мноства простых лікаў, несувымернасць стараны квадрата і яго дыяганалі (па сутнасці доказ ірацыянальнасці ліку √2), створаны алгарытм выяўлення агульнай меры двух адрэзкаў і найбольшага агульнага дзельніка, Піфагорам знойдзены агульны выгляд цэлалікавых катэтаў і гіпатэнузы прамавугольных трохвугольнікаў, значны ўплыў на развіццё арыфметыкі зрабіў Архімед. Фундаментальнае значэнне арыфметыкі як навукі стала зразумелым у канцы 17 стагоддзя ў сувязі з далучэннем да яе паняцця ірацыянальнага ліку. Развіццё апарату сувязяў паміж гэтымі лікамі і іх рацыянальнымі набліжэннямі (у прыватнасці, дзесятковымі), а таксама вынаходства і дастасаванне лагарыфмаў (шатландскі матэматык Дж.Непер) значна пашырылі тэматыку даследаванняў. Шматлікія пытанні знайшлі вырашэнне ў лікаў тэорыі. Спроба Г.Грасмана аксіяматычнай пабудовы арыфметыкі (сярэдзіна 19 стагоддзя) завершана італьянскім матэматыкам Дж.Пеана ў выглядзе 5 аксіём: 1) адзінка ёсць натуральны лік; 2) наступны за натуральным лікам ёсць таксама натуральны лік; 3) у адзінкі няма папярэдняга натуральнага ліку; 4) калі натуральны лік a стаіць за натуральным лікам b і за натуральным лікам c, то b і c тоесныя; 5) калі якое-небудзь сцвярджэнне даказана для адзінкі і калі з дапушчэння, што яно праўдзівае для натуральнага ліку n, вынікае, што яно выконваецца і для наступнага за n натуральнага ліку, то гэта сцвярджэнне справядліва для адвольнага натуральнага ліку (аксіёма поўнай матэматычнай індукцыі). Па-за прапанаванай сістэмай аксіём застаюцца многія пытанні, у якіх вывучаецца ўся бесканечная сукупнасць натуральных лікаў, што патрабуе даследавання несупярэчлівасці адпаведнай сістэмы аксіём і больш дэталёвага аналізу сэнсу сцвярджэнняў, якія вынікаюць з яе. Як навука арыфметыка часам атаясамліваецца з тэорыяй лікаў.

Літ.:

История математики с древнейших времен до начала XIX столетия. Т. 1—3. М., 1970—72. Депман И.Я. История арифметики. 2 изд. М., 1965.

В.І.Бернік.

т. 2, с. 9

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

А́ТАМНАЯ ФІ́ЗІКА,

раздзел фізікі, прысвечаны вывучэнню будовы і ўласцівасцяў атамаў, а таксама элементарных працэсаў, у якіх яны ўдзельнічаюць. У шырокім сэнсе атамная фізіка (субатамная фізіка) — фізіка мікраскапічных з’яў, якім характэрна перарыўнасць рэчыва і электрамагнітнага выпрамянення і якія падпарадкоўваюцца квантавым законам (гл. Элементарныя часціцы, Атам, Малекула, Фатон).

Гіпотэза, што матэрыя складаецца з атамаў як найменшых непадзельных і нязменных часціц, узнікла ў Стараж. Грэцыі ў 5—33 ст. да нашай эры. Дасканалыя ўяўленні пра атамістычную будову рэчыва склаліся значна пазней. У сярэдзіне 19 ст. дакладна вызначаны паняцці малекулы і атама. У канцы 19 ст. адкрыты электрон, рэнтгенаўскія прамяні і радыеактыўнасць, што дало магчымасць устанавіць складаную будову атама. Сучасную ядз. мадэль атама прапанаваў Э.Рэзерфард у 1911. Гэта мадэль і квантавыя ўяўленні М.Планка, А.Эйнштэйна і інш. далі магчымасць Н.Бору ў 1913 стварыць першую квантавую тэорыю атама і яго спектраў (гл. Бора тэорыя). У 1923 Л. дэ Бройль выказаў ідэю пра хвалевыя ўласцівасці часціц рэчыва, што было пацверджана эксперыментальна ў доследах па дыфракцыі электронаў у 1927 (гл. Дыфракцыя часціц).

Тэарэтычныя асновы атамнай фізікі закладзены ў 1925—28 працамі В.Гайзенберга, Э.Шродынгера, М.Борна, П.Дзірака і інш., у выніку чаго ўзніклі квантавая механіка і квантавая электрадынаміка. На гэтай аснове дадзена тлумачэнне вял. колькасці мікраскапічных з’яў і прадказаны шэраг эфектаў на атамна-малекулярным узроўні (гл. Атамныя спектры, Вымушанае выпрамяненне, Зонная тэорыя, Фотаэфект). Для апісання ўласцівасцяў элементарных часціц і іх узаемадзеянняў створана квантавая тэорыя поля. Развіццё атамнай фізікі прывяло да карэннага перагляду асн. уяўленняў і паняццяў фізікі мікраскапічных з’яў і ўзнікнення новых галін ведаў і тэхн. дастасаванняў, напрыклад квантавай электронікі, мікраэлектронікі, фізікі цвёрдага цела. На Беларусі даследаванні па атамнай фізіцы і сумежных навуках праводзяцца з канца 1950-х г. у ін-тах фіз. і фізіка-тэхн. профілю АН, БДУ, Бел. політэхн. акадэміі і інш.

Літ.:

Зубов В.П. Развитие атомистических представлений до начала XIX века. М. 1965;

Хунд Ф. История квантовой физики Киев, 1980;

Джеммер М. Эволюция понятий квантовой механики: Пер. с англ. М. 1985;

Ельяшевич М.А. Развитие Нильсом Бором квантовой теории атома и принципа соответствия // Успехи физ. наук. 1985. Т. 147, вып. 2.

М.А.Ельяшэвіч.

т. 2, с. 67

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АХО́ВА ЖЫВЁЛ,

комплекс міжнародных, дзярж., рэгіянальных гасп.-адм. і грамадскіх мерапрыемстваў па захаванні, узнаўленні і рацыянальным выкарыстанні асобных відаў і ўсёй сукупнасці відаў дзікіх жывёл (генафонду) і інш. рэсурсаў жывёльнага свету; састаўная частка аховы прыроды і праблемы захавання біял. разнастайнасці Зямлі.

На Беларусі ахова жывёл рэгулюецца законамі Рэспублікі Беларусь «Аб ахове і выкарыстанні жывёльнага свету» (1981), «Аб ахове навакольнага асяроддзя» (1992), Парадкам выдачы дазволаў на здабычу жывёл, занесеных у Чырвоную кнігу Рэспублікі Беларусь (1993), адпаведнымі палажэннямі зямельнага, воднага і ляснога заканадаўства, міжнар. пагадненнямі, канвенцыямі і інш. Заканадаўствам устаноўлены забаронныя, папераджальныя, рэгулятыўныя, аднаўленчыя і інш. абавязкі дзярж. і грамадскіх арг-цый, гаспадарак і грамадзян па захаванні аптымальнай колькасці жывёл і іх генафонду (гл. Ахова генафонду). Асаблівай аховы патрабуюць рэдкія і тыя, што знікаюць, рэліктавыя, асяроддзеўтваральныя і асяроддзефарміравальныя, гаспадарча карысныя, прамыслова- і спартыўна-паляўнічыя віды жывёл. Ахова рэдкіх і тых, што знікаюць, відаў жывёл ажыццяўляецца ў адпаведнасці са спісам, прапанаваным Міжнар. саюзам аховы прыроды і прыродных рэсурсаў (МСАП), Еўрапейскім Чырвоным спісам рэдкіх і тых, што знікаюць, відаў жывёл, рэгіянальнымі і нац. Чырвонымі кнігамі (гл. Ахоўныя жывёлы). У адпаведнасці з міжнар. канвенцыяй аб гандлі відамі дзікай фауны і флоры, якія знаходзяцца пад пагрозай знікнення, на Беларусі забаронены здабыча, продаж і купля хахулі, гіганцкай вячэрніцы, сярэднееўрап. ляснога ката, зубра, скапы, змеяеда, арлана-белахвоста, беркута, сапсана, дзербніка, шулячка, звычайнай пустальгі, чорнага бусла, драфы. Ахова прамыслова- і спартыўна-паляўнічых відаў жывёл ажыццяўляецца праз ліцэнзаванне паляўнічага промыслу, правядзенне біятэхн. мерапрыемстваў, увядзенне часовых забаронаў на здабыванне (адлоў ці адстрэл) асобных відаў, арганізацыю месцаў спакою дзікіх жывёл. Колькасць прамысл. жывёл рэгулюецца Палажэннем аб паляванні і вядзенні паляўнічай гаспадаркі і Правіламі рыбалоўства ў вадаёмах Рэспублікі Беларусь (гл. Паляўніцтва, Рыбалоўства). Функцыю кантролю мерапрыемстваў па ахове жывёл выконваюць Мін-ва прыродных рэсурсаў і аховы навакольнага асяроддзя і Мін-ва лясной гаспадаркі Рэспублікі Беларусь з далучэннем грамадскасці (гл. Беларускае таварыства аховы прыроды, Беларускае таварыства паляўнічых і рыбаловаў і інш.). Адной з формаў аховы жывёл з’яўляецца таксама ўтрыманне і развядзенне рэдкіх і гаспадарча карысных відаў у заапарках, заасадах, спецыялізаваных гадавальніках і інш.

Т.А.Філюкова.

т. 2, с. 149

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БАРСЕЛО́НА

(Barcelona),

горад на ПнУ Іспаніі, у міжрэччы рэк Бесас і Льёбрэгат. Адм. ц. аўт. вобласці Каталонія і прав. Барселона. 1624 тыс. ж., у агламерацыі больш за 4,65 млн. ж. (1991; 2-і пасля Мадрыда па колькасці жыхароў). Вузел чыгунак і аўтадарог. Порт на Міжземным м., аўтамаб., паромныя зносіны з партамі Балеарскіх і Канарскіх а-воў, суседніх краін. Міжнар. аэрапорт. Важны эканам. і культ. цэнтр краіны. Асн. галіны прам-сці: тэкст. (1-е месца ў краіне), машынабудаванне (у тым ліку аўта-, судна-, лакаматывабудаванне), вытв-сць энергет. абсталявання, станкабудаванне, эл.-тэхн., радыёэлектроннае і інш., хім., цэлюлозна-папяровая, паліграф., цэм., гарбарная, харч. і інш. Метрапалітэн. Барселонскі універсітэт і 2 інш. ун-ты. Музеі: археал.; нар. рамёстваў і мастацтваў; Федэрыка Марэса; гісторыі горада; прыгожых мастацтваў у Каталоніі; сучаснага мастацтва; Музей Пікаса. Месца правядзення міжнар. гандл.-прамысл. кірмашоў. Сусв. выстаўкі ў 1888 і 1929. У Барселоне адбыліся XXV летнія Алімп. гульні (1992).

Першапачаткова грэч., з 236 да нашай эры карфагенская, з 218 да нашай эры рым. калонія. У 415 захоплена вестготамі, у 6 ст. сталіца іх дзяржавы. З 712 пад уладай арабаў, з 801 сталіца франкскай Ісп. маркі, пасля яе падзелу (874) — Барселонскага графства, у 1137 — аб’яднанага з Арагонам. У час грамадз. вайны ў Барселоне знаходзіўся рэсп. ўрад (1937—39). З 1977 адм. ц. аўт. вобласці Каталонія.

Стары і Новы гарады звязаны пл. Пласа дэ Каталунья, якая акружана фантанамі і скульпт. групамі (1927), з’яўляецца дзелавым цэнтрам Барселоны. Помнікі архітэктуры: раманская царква Сан-Пабла дэль Кампе (10—13 ст.); гатычныя сабор (1298—15 ст.); царква Санта-Марыя дэль Мар (1320—70); біржа (1380—92); судовая палата «Аўдыенсія» (15 ст.); барочная царква Нуэстра Сеньёра дэ Белен (1687—1729). У канцы 19 — пач. 20 ст. Барселона — буйны цэнтр архітэктуры стылю мадэрн і авангардызму. Своеасаблівасць гораду надаюць мудрагелістыя пабудовы арх. А.Гаўдзі (паркавы комплекс Гуэль, 1885—89; царква Саграда Фамілія, з 1884, не закончана; жылыя дамы Каса Батла, 1905—07, і Каса Міла, 1905—10). Сучасныя пабудовы: аўтамаб. з-д «SEAT», Дом гандлю, будынак Калегіі архітэктараў з фрызам па эскізах П.Пікаса.

т. 2, с. 317

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДСО́РБЦЫЯ

(ад лац. ad... на, да + sorbere паглынаць),

паглынанне рэчыва з газавага або вадкага асяроддзя (адсарбату) паверхняй, мікрасітавінамі цвёрдага цела (адсарбенту) ці вадкасці. Адсорбцыя — прыватны выпадак сорбцыі, якая ўключае абсорбцыю. У аснове адсорбцыі ляжаць асаблівыя ўласцівасці рэчыва ў паверхневым слоі, колькасна яна характарызуецца паверхневым нацяжэннем. Падзяляецца на фізічную абсорбцыю і хемасорбцыю, без рэзкага размежавання паміж імі; часта спалучаецца ў адзіным працэсе.

Фізічная адсорбцыя — вынік міжмалекулярных узаемадзеянняў (дысперсных сіл і сіл электрастатычнага характару); менш трывалая, абарачальная (адначасова адбываецца дэсорбцыя) працякае адвольна з памяншэннем паверхневай свабоднай энергіі і выдзяленнем цяпла. Скорасць фіз. адсорбцыі залежыць ад хім. прыроды і геам. структуры адсарбенту, канцэнтрацыі і прыроды рэчываў, што паглынаюцца, т-ры, дыфузіі і міграцыі малекул адсарбату; калі яна роўная скорасці дэсорбцыі, настае адсарбцыйная раўнавага. Пры хемасорбцыі малекулы адсарбату і адсарбенту ўтвараюць хім. злучэнні.

Велічыню адсорбцыі адносяць да адзінкі паверхні ці масы адсарбенту; яна павялічваецца пры павышэнні канцэнтрацыі адсарбату і памяншаецца пры павышэнні т-ры. Пры цвёрдых адсарбентах велічыню адсорбцыі вызначаюць па колькасці паглынутага рэчыва ці па змене канцэнтрацыі адсарбату; пры вадкіх — па змене паверхневага нацяжэння. Адсорбцыя адыгрывае важную ролю ў цеплаабмене, стабілізацыі калоідных сістэм (гл. Дысперсныя сістэмы, Каагуляцыя, Міцэлы), у гетэрагенных рэакцыях (гл. Тапамічныя рэакцыі, Каталіз). Выкарыстоўваецца ў храматаграфіі, прамысл. тэхналогіях, мае месца ў многіх біял. і глебавых працэсах. Адсорбцыя ў біялагічных сістэмах — першая стадыя паглынання рэчываў з навакольнага асяроддзя субмікраскапічнымі калоіднымі структурамі, арганеламі і клеткамі. У рознай ступені ўласціва працэсам функцыянавання біял. мембран, узаемадзеяння ферментаў з субстратам, антыцелаў з антыгенамі (на пач. стадыі), нейтралізацыі таксічных агентаў, усмоктвання пажыўных рэчываў і інш., дзе істотнае значэнне маюць паверхневыя ўласцівасці асобных кампанентаў біял. сістэм. У мед. практыцы індыферэнтнымі, нерастваральнымі адсарбентамі карыстаюцца для выдалення з арганізма соляў цяжкіх металаў, алкалоідаў, харч. інтаксікантаў, пры метэарызме, вонкава — у выглядзе прысыпак, мазяў і пастаў — пры запаленні скуры і слізістых абалонак для падсушвання. На з’явах адсорбцыі грунтуецца шэраг метадаў біяхім. даследаванняў.

Літ.:

Адамсон А. Физическая химия поверхностей: Пер. с англ. М., 1979;

Кельцев Н.В. Основы адсорбционной техники. 2 изд. М., 1984.

т. 1, с. 138

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕНЕТЫ́ЧНАЕ ВЫЗНАЧЭ́ННЕ ПО́ЛУ,

фарміраванне арганізмаў пэўнага полу ў залежнасці ад камбінацый генетычных фактараў, лакалізаваных у храмасомах. Пры гэтым мае значэнне і пэўны набор палавых храмасом, і дзеянне генаў, размешчаных у іх, а таксама ў аўтасомах. Палавыя храмасомы XX і XY, якія генетычна вызначаюць пол, фарміруюцца ў невял. колькасці двухдомных раслін (эладэя, смолка, некаторыя імхі), яны ёсць у чалавека і вышэйшых пазваночных жывёл (трапляюцца як выключэнне ў рыб і земнаводных) і ў многіх членістаногіх, павукападобных, насякомых і інш.

У чалавека звычайна вылучаюць некалькі ўзроўняў палавой дыферэнцыяцыі. Адзін з іх звязаны з наяўнасцю Y-храмасомы, прысутнасць якой неабходна для дыферэнцыяцыі палавых залоз (ганад) паводле мужчынскага тыпу. У мужчын фарміруецца 2 тыпы сперміяў: з X-храмасомай (23,X) і Y-храмасомай (23,Y). У яйцаклетак набор храмасом у норме 23,X. Апладненне яйцаклеткі сперміем 23,X прыводзіць да развіцця зародка жаночага полу (з наборам храмасом 46,XX), апладненне сперміем 23,Y вядзе да ўзнікнення зародка мужчынскага полу (46,XY). Фарміраванне полу плода першапачаткова залежыць ад тыпу спермія, які апладніў яйцаклетку (т.ч. за вызначэнне полу дзіцяці «адказвае» мужчына). Наяўнасць Y-храмасомы з’яўляецца першым фактарам, неабходным для фарміравання полу плода. Далейшае развіццё полу адбываецца пад кантролем H-Y антыгена, які кантралюецца Y-храмасомай. Калі H-Y антыген не ўтвараецца, ідзе развіццё паводле жаночага тыпу. Разам з тым і Y-храмасома, і H-Y антыген вызначаюць толькі генетычную дэтэрмінацыю полу, але не адказваюць за фарміраванне вонкавых палавых органаў, якія ў мужчын утвараюцца з вольфавых, а ў жанчын — з мюлеравых праток. Важная роля належыць гармонам, што выпрацоўваюцца клеткамі эмбрыянальных яечак. Парушэнні на храмасомным, антыгенным або гарманальным этапах вядуць да развіцця паводле жаночага тыпу. Зрэдку бываюць анамаліі псіхасексуальнай арыентацыі паводле полу (гл. Гомасексуалізм, Трансвестызм). Існуе мноства захворванняў (крыптархізм, манархізм, дысгенезія ганад і інш.), калі пад уплывам парушэнняў храмасом, генаў або знешніх фактараў развіццё палавых органаў індывіда адхіляецца ад звычайнага. Прагноз і лячэнне ў такіх выпадках залежаць ад характару захворвання.

т. 5, с. 156

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГО́РНЫЯ РАБО́ТЫ,

работы па раскрыцці і падрыхтоўцы радовішча, выманні карыснага выкапня і транспарціроўцы яго ў межах прадпрыемства, падтрыманні горных вырабатак у рабочым стане (горных мацаванняў, вентыляцыі, водаадліву і інш.). Адрозніваюць горныя работы адкрытыя (гл. Адкрытая распрацоўка радовішчаў), падземныя (гл. Падземная распрацоўка радовішчаў), падводныя (гл. Падводная здабыча), геатэхналагічныя (гл. Геатэхналогія) і інш.

Адкрытыя горныя работы — распрацоўка парод паслядоўнымі слаямі з зямной паверхні. Уключаюць падрыхтоўку паверхні кар’ернага поля, горна-капітальныя (стварэнне капітальных і разразных траншэй, частковае выдаленне раскрыўных парод), горна-падрыхтоўчыя, раскрыўныя і здабыўныя работы. Здабыўныя работы на кар’ерах вядуцца на ўступах і рабочых пляцоўках. Уступы пры распрацоўцы гарыз. і пакатых пакладаў перамяшчаюцца ад разразной траншэі да мяжы кар’ернага поля, пры распрацоўцы буйных нахіленых пакладаў развіваюцца ў глыбіню кар’ера. На Беларусі адкрытым спосабам здабываюць граніт, даламіт, мергель, вапну, торф (гл. Торфаздабыча), мел, буд. камень, гліну, будаўнічыя, сілікатныя, шкляныя і фармовачныя пяскі. Падземныя горныя работы вядуцца ў тоўшчы зямной кары, уключаюць раскрыццё, падрыхтоўку вырабаткі і ачышчальнае выманне выкапня. Для распрацоўкі руднага і калійнага радовішчаў падземным спосабам ствараецца горнае прадпрыемства, у склад якога ўваходзяць руднік, шахта і абагачальная ф-ка. Спосабы распрацоўкі вугальнага радовішча залежаць ад горна-геал. і горна-тэхн. фактараў (колькасці і магутнасці пластоў, глыбіні іх залягання, памераў шахтавага поля і інш.). Распрацоўка шахтавага поля ажыццяўляецца вертыкальнымі і нахіленымі шахтавымі стваламі, штольнямі, брэмсбергамі, лавамі, камерамі, камбінаваным спосабам. Ачышчальнае выманне выкапня вядзецца ў горных вырабатках, якія перамяшчаюцца ў напрамку залягання пакладу. На Беларусі падземным спосабам вядзецца здабыча калійных солей на ВА «Беларуськалій». Горныя работы праводзяцца з дапамогай горных камбайнаў, інш. машын і механізмаў, сродкаў гідрамеханізацыі і геатэхналогіі, буравых установак і буравых інструментаў і інш. Найважнейшыя ўмовы выканання горных работ — забеспячэнне бяспечных умоў працы, рацыянальнае выкарыстанне нетраў, ахова навакольнага асяроддзя. За горнымі работамі ўстаноўлены горны нагляд.

Літ.:

Брюховецкий О.С., Бунин Ж.В., Ковалев И.А. Технология и комплексная механизация разработки месторождений полезных ископаемых. М., 1989, Агошков М.И., Борисов С.С., Боярский В.А. Разработка рудных и нерудных месторождений. 3 изд. М., 1983.

Б.А.Багатаў, М.І.Беразоўскі.

т. 5, с. 365

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)