ПАЛЕАПАТАМАЛО́ГІЯ (ад палеа... + грэч. potamos рака + ...логія),

навука аб стараж. рэках, якія захаваліся ў выглядзе алювіяльных адкладаў і пахаваных рачных далін; частка палеагеаграфіі і гідралогіі рэк. Пры вывучэнні стараж. рэк выкарыстоўваюць комплекс геал., геамарфалагічных, палеанталагічных і інш. метадаў. П. высвятляе ўмовы намнажэння, заляганне, склад, фацыяльную зменлівасць алювіяльных адкладаў, іх узрост, суадносіны з ледавіковымі, марскімі і інш. тыпамі адкладаў, асаблівасці расліннага і жывёльнага свету ў былых рачных сістэмах. Праводзяцца палеагеаграфічныя рэканструкцыі стараж. рачной сеткі, вызначаецца скорасць цячэння, расходы вады, энергія эразійнага размыву і гл. Алювій пахаваных далін мае ў сабе розныя карысныя выкапні (напр., россыпы высакародных і рэдкіх металаў, вял. запасы прэснай вады). Рэкі, што існавалі ў познім пратэразоі і раннім палеазоі (да дэвону), наз. эарэкамі, у познім палеазоі і мезазоі — пратарэкамі, у палеагене і неагене — палеарэкамі, у плейстацэне — прарэкамі. Заснавальнік П. (1929) чэш. вучоны Ф.Ржыкоўскі. На Беларусі навук. даследаванні ў галіне П. праводзіліся пад кіраўніцтвам Г.І.Гарэцкага (Дзярж. прэмія СССР 1971 за палеапатамалагічныя даследаванні).

Літ.:

Горецкий Г.И. Основные проблемы палеопотамологии антропогена // Бюл. комиссии АН СССР по изучению четвертичного периода. 1974. № 42;

Яго ж. Особенности палеопотамологии ледниковых областей (на примере Белорусского Понеманья). Мн., 1980.

А.Ф.Санысо.

т. 11, с. 546

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДНО́СНАСЦІ ТЭО́РЫЯ,

фізічная тэорыя прасторы і часу ў іх сувязі з матэрыяй і законамі яе руху. Падзяляецца на спецыяльную (СТА) і агульную (АТА). СТА створана ў 1904—08 у выніку пераадольвання цяжкасцяў, якія ўзніклі ў класічнай фізіцы пры тлумачэнні аптычных (электрадынамічных) з’яў у рухомых асяроддзях (гл. Майкельсана дослед). Заснавальнікі СТА — Г.А.Лорэнц, А.Пуанкарэ, А.Эйнштэйн, Г.Мінкоўскі.

У працы Эйнштэйна «Да электрадынамікі рухомых цел» (1905) сфармуляваны 2 асн. пастулаты СТА; эквівалентнасць усіх інерцыйных сістэм адліку (ІСА), пры апісанні не толькі мех., а таксама аптычных, эл.-магн. і інш. працэсаў (спец. адноснасці прынцып); пастаянства скорасці святла ў вакууме ва ўсіх ІСА; незалежнасць яе ад руху крыніц і прыёмнікаў святла. Пераход ад адной ІСА да ўсякай іншай ІСА адбываецца з дапамогай Лорэнца пераўтварэнняў, якія вызначаюць характэрныя прадказанні СТА; скарачэнне падоўжных памераў цела, запавольванне часу і нелінейны закон складання скарасцей, згодна з якім у прыродзе не можа адбывацца рух (перадача сігналаў) са скорасцю, большай за скорасць святла ў вакууме. СТА — фіз. тэорыя працэсаў, для якіх уласцівы вял., блізкія да скорасці святла c у вакууме скорасці руху. У тым выпадку, калі скорасць v намнога меншая за скорасць свята (v << c), усе асн. палажэнні і формулы СТА пераходзяць у адпаведныя суадносіны класічнай механікі. Раздзелы фізікі, у якіх неабходна ўлічваць адноснасць адначасовасці (з дакладнасцю да v​2/c​2 і вышэй), наз. рэлятывісцкай фізікай. Першай створана рэлятывісцкая механіка, у якой устаноўлены залежнасці поўнай энергіі E і імпульсе p цела масы m ад скорасці руху v: E = m c2 1 v2 / c2 , p = m v 1 v2 / c2 , адкуль вынікае ўзаемасувязь энергіі спакою цела з яго масай: E0 = mc​2. На падставе аб’яднання СТА і квантавай механікі пабудаваны рэлятывісцкая квантавая механіка і рэлятывісцкая квантавая тэорыя поля, якія з’явіліся тэарэт. асновай фізікі элементарных часціц і фундаментальных узаемадзеянняў. Усе асн. палажэнні і прадказанні СТА і пабудаваных на яе аснове фіз. тэорый знайшлі пацвярджэнне ў эксперыментах, выкарыстоўваюцца пры вырашэнні практычных задач ядз. энергетыкі, праектаванні і эксплуатацыі паскаральнікаў зараджаных часціц і г.д. Агульная тэорыя адноснасці (АТА), створаная Эйнштэйнам (1915—16) як рэлятывісцкая (геаметрычная) тэорыя гравітацыйных узаемадзеянняў, вызначыла новы ўзровень навук. поглядаў на прастору і час. Яна пабудаваная на падставе СТА як рэлятывісцкае абагульненне тэорыі сусветнага прыцягнення Ньютана на моцныя гравітацыйныя палі і скорасці руху, блізкія да скорасці святла. АТА апісвае прыцягненне як уздзеянне гравітацыйнай масы рэчыва і поля згодна з эквівалентнасці прынцыпам на ўласцівасці 4-мернай прасторы-часу. Геаметрыя гэтай прасторы перастае быць эўклідавай (плоскай), а становіцца рыманавай (скрыўленай). Гэта азначае, што кожнаму пункту прасторы-часу адпавядае свая метрыка, сваё скрыўленне. Пераўтварэнні Лорэнца ў АТА таксама залежаць ад каардынат прасторы і часу, становяцца лакальнымі, таму можна гаварыць толькі аб лакальным выкананні законаў СТА у АТА. Ролю гравітацыйнага патэнцыялу адыгрывае метрычны тэнзар, які вызначаецца як рашэнне ўведзеных у АТА нелінейных ураўненняў гравітацыйнага поля (ураўненняў Гільберта—Эйнштэйна). У АТА прымаецца, што гравітацыйная маса скрыўляе трохмерную прастору і змяняе працягласць часу тым больш, чым большая гэта маса (большае прыцягненне). У АТА рух цел па інерцыі (пры адсутнасці вонкавых сіл негравітацыйнага паходжання) адбываецца не па прамых лініях з пастаяннай скорасцю, а па скрыўленых лініях з пераменнай скорасцю. Гэта значыць, што ў малой частцы прасторы-часу, дзе гравітацыйнае поле можна лічыць аднародным, створаны ім эфект эквівалентны эфекту, абумоўленаму паскораным (неінерцыяльным) рухам адпаведнай сістэмы адліку. Таму АТА, у якой паняцце ІСА па сутнасці не мае сэнсу, наз. тэорыяй неінерцыйнага руху. Асн. гравітацыйныя эфекты, прадказаныя ў АТА, пацверджаны эксперыментальна. АТА адыграла вял. ролю ў фарміраванні сучаснай касмалогіі.

На Беларусі навук. даследаванні па СТА і АТА пачаліся ў 1928—29 (Ц.Л.Бурстын, Я.П.Громер) і атрымалі інтэнсіўнае развіццё ў АН, БДУ і інш.

Літ.:

Эйнштэйн А. Сущность теории относительноси. М., 1955;

Фок В.А. Теория пространства, времени и тяготения. М., 1961;

Ландау Л.Д., Лифшиц Е.М. Теория поля. М., 1967;

Синг Дж.Л. Общая теория относительности: Пер. с англ. М., 1963;

Фёдоров Ф.И. Группа Лоренца. М., 1979;

Левашев А.Е. Движение и двойственность в релятивистской электродинамике. Мн., 1979;

Иваницкая О.С. Лоренцев базис и гравитационные эффекты в эйнштейновской теории тяготения. Мн., 1979.

А.А.Богуш.

т. 1, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСЦЫЛО́ГРАФ (ад лац. oscillum ваганне + ...граф),

вымяральная прылада для графічнага назірання і запісу функцыянальных сувязяў паміж эл. велічынямі, што характарызуюць які-н. фізічны працэс. З дапамогай асцылографа вызначаюць змены сілы току і напружання ў часе, вымяраюць частату, зрух фазаў, характарыстыкі электравакуумных і паўправадніковых прылад, а з дапамогай спец. датчыкаў (напр., тэрмапары) неэл. велічыні: т-ру, ціск, паскарэнне і інш. Асцылографы бываюць нізка- (да 1 МГц) і высокачастотныя (да 100 МГц і вышэй), адна- і многапрамянёвыя, імпульсныя, запамінальныя, спец. тэлевізійныя і інш.

Святлопрамянёвы асцылограф складаецца з люстранага гальванометра (шлейфа), святлоаптычнай сістэмы і прыстасаванняў для працягвання святлоадчувальнага носьбіта запісу (напр., фотапаперы) і непасрэднага назірання, вызначальніка часу. Бывае з фатаграфічным, электраграфічным, ультрафіялетавым і камбінаваным запісам адхілення светлавога праменя, адбітага ад шлейфа, скорасць працягвання носьбіта запісу да 5000 мм/с. Можна адначасова даследаваць да 64 розных працэсаў, напрыклад пры вывучэнні вібрацый і дэфармацый у самалётах, турбінах. Электроннапрамянёвы асцылограф прызначаны для непасрэднага назірання і фатаграфавання эл. працэсаў на экране электронна-прамянёвай трубкі (ЭПТ). Сігнал падаецца на вертыкальна адхіляльныя пласціны (шпулі) ЭПТ, напружанне разгорткі пры назіранні часавай залежнасці — на гарызантальна адхіляльныя.

Літ.:

Аршвила С.В., Борисевич Е.С., Жилевич И.И. Электрографические светолучевые осциллографы. М., 1978;

Линт Г.Э. Автоматические осциллографы при измерениях. М., 1972.

П.С.Габец.

т. 2, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЭРАДЫНА́МІКА (ад аэра... + дынаміка),

раздзел аэрамеханікі, у якім вывучаюцца законы руху газападобнага асяроддзя і яго ўзаемадзеяння з цвёрдымі целамі; тэарэт. аснова авіяцыі, ракетнай тэхнікі, метэаралогіі, турбабудавання і інш. Разглядае рух целаў з дагукавымі скорасцямі (да 1200 км/гадз); рух целаў са скорасцю, большай за скорасць гуку, вывучае газавая дынаміка. Аэрадынаміка ўзнікла ў 20 ст. ў сувязі з развіццём авіяцыі. Тэарэтычнае рашэнне задач аэрадынамікі заснавана на ўраўненнях гідрааэрамеханікі. Пры вырашэнні найбольш простых пытанняў (размеркаванне ціску і скорасцяў вакол абцякальнага цела і інш.) выкарыстоўваецца набліжэнне ідэальнай вадкасці, несціскальнай пры малых і сціскальнай пры вял. скорасцях. Наяўнасць вязкасці ў рэальных вадкасцях прыводзіць да ўзнікнення супраціўлення і ўлічваецца пры вывучэнні цеплаабмену целаў з патокам газу.

Спец. прыкладныя часткі аэрадынамікі: аэрадынаміка самалёта (вывучае рух самалётаў цалкам), знешняя балістыка (даследуе палёт снарадаў), аэрадынаміка турбамашын і рэактыўных рухавікоў, прамысловая аэрадынаміка (разлік паветранадзімальных установак, ветравых рухавікоў, струменных апаратаў, вентыляцыйнай тэхнікі, аэрадынамічных сіл, якія ўзнікаюць пры руху аўтамабіляў, цягнікоў і інш.). Эксперыментальная аэрадынаміка з дапамогай аэрадынамічных трубаў вызначае лікавыя каэфіцыенты сіл і момантаў, што дзейнічаюць на цела з боку газавага патоку. У аэрадынаміцы шырока выкарыстоўваецца матэм. мадэляванне з дапамогай ЭВМ.

Літ.:

Струминский В.В. Аэродинамика и молекулярная газовая динамика. М., 1985;

ЭВМ в аэродинамике: Пер. с англ. М., 1985;

Киреев В.И., Войновский А.С. Численное моделирование газодинамических течений. М., 1991.

Ю.В.Хадыка.

т. 2, с. 172

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАЛАКА́ЦЫЯ,

адшукванне, вызначэнне месцазнаходжання, параметраў руху і распазнаванне падводных аб’ектаў з дапамогай гідраакустычных сігналаў. Грунтуецца на законах гідраакустыкі. Бывае актыўная і пасіўная.

Актыўная гідралакацыя заснавана на выпраменьванні акустычных сігналаў у воднае асяроддзе і прыёме (рэгістрацыі) і аналізе адбітых ад аб’екта рэхасігналаў. Дазваляе вызначыць прасторавыя каардынаты і параметры руху выяўленага аб’екта, яго памеры і інш. характарыстыкі. З’яўляецца асн. спосабам атрымання інфармацыі аб падводных аб’ектах, якія не ствараюць уласнае акустычнае поле (напр., донныя і якарныя міны, патанулыя судны). Ажыццяўляецца з дапамогай розных тыпаў гідралакацыйных станцый (гідралакатараў) і прылад (рэхалотаў), рэхаледамераў і інш.). Пасіўная гідралакацыя заснавана на прыёме і апрацоўцы акустычных сігналаў (шумаў), якія звычайна ненаўмысна ствараюцца самім аб’ектам (напр., падводнай лодкай). Дазваляе выявіць такі аб’ект, распазнаць яго, вызначыць напрамак на яго, скорасць і інш. элементы яго руху. Выкарыстоўвае рознага тыпу шумапеленгатары і тракты шумапеленгавання гідраакустычных комплексаў. Метады і сродкі гідралакацыі выкарыстоўваюцца ў марской справе (выяўленне падводных перашкод — рыфаў, скал, айсбергаў), рыбнай прам-сці (пошук касякоў рыбы), ваеннай справе (выяўленне падводных лодак, навядзенне іх на пэўны аб’ект) і інш.

На Беларусі пытанні тэорыі і практыкі гідралакацыі распрацоўваюцца ў Бел. ун-це інфарматыкі і радыёэлектронікі, НДІ прыкладных фіз. праблем імя А.Н.Сеўчанкі.

Літ.:

Бурдик В.С. Анализ гидроакустических систем: Пер. с англ. Л., 1988.

В.І.Вараб’ёў.

т. 5, с. 228

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕХА́НІКА ЦЕЛ ПЕРАМЕ́ННАЙ МА́СЫ,

раздзел механікі, што вывучае рух цел, маса якіх змяняецца ў працэсе руху; тэарэт. аснова рашэння многіх задач авіяц. і ракетнай тэхнікі, а таксама тэарэт. і нябеснай механікі, касманаўтыкі і інш. Асноватворныя даследаванні па гэтых праблемах належаць І.У.Мяшчэрскаму і К.Э.Цыялкоўскаму.

Змена масы цела адбываецца пры аддзяленні (адкідванні) часцінак рэчыва (напр., згарэлага паліва) або пры далучэнні (наліпанні) часцінак (напр., пры ўсмоктванні паветра рэактыўным рухавіком самалёта, наліпанні касм. пылу на метэарыт). Дыферэнцыяльнае ўраўненне руху цела (матэрыяльнага пункта) пераменнай масы m, выведзенае Мяшчэрскім (1904): m dv dt = F + dm1 dt u1 + dm2 dt u2 дзе vскорасць цела; t — час; F — раўнадзейная ўсіх знешніх сіл; u1 і u2 — адносныя скорасці часцінак, якія аддзяляюцца і далучаюцца; dm1dt і dm2dt — секундны расход і прыход масы адпаведна. Аддзяленне часцінак абумоўлівае рэактыўную цягу F1 = dm1 dt u1 , а далучэнне — тармазную сілу F2 = dm2 dt u2 . Аналагічнае ўраўненне пры ўмове F2 = 0 атрымана Мяшчэрскім у 1897.

Літ.:

Мещерский И.В. Работы по механике тел переменной массы. 2 изд. М., 1952;

Циолковский К.Э. Собр. соч. Т. 2. М., 1954.

А.І.Болсун.

т. 10, с. 322

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫМЯРА́ЛЬНЫ ПЕРАЎТВАРА́ЛЬНІК,

прыстасаванне, якое пераўтварае фіз. велічыню, што вымяраецца або рэгулюецца, у сігнал (звычайна электрычны) для далейшай перадачы, апрацоўкі ці рэгістрацыі. Адна з асн. частак сродкаў вымяральнай тэхнікі, сістэм аўтаматыкі і тэлемеханікі. Тэрмін «вымяральны пераўтваральнік» уведзены стандартам замест тэрміна «датчык».

Параметры, якія ўспрымаюцца вымяральным пераўтваральнікам, бываюць механічныя (намаганне, перамяшчэнне, скорасць, вібрацыя), гідраўлічныя і пнеўматычныя (ціск, расход), аптычныя (сіла святла), цеплавыя (т-ра), электрычныя (напружанне і ток), радыеактыўныя. Выходныя сігналы падзяляюцца на электрычныя і пнеўматычныя (часам гідраўлічныя), амплітудныя, часаімпульсныя, частотныя і фазавыя, аналагавыя (неперарыўныя) і лічбавыя (дыскрэтныя). Вымяральны пераўтваральнік складаецца з аднаго (напр., тэрмапара, тэнзометр) або з некалькіх элементарных пераўтваральнікаў, найважнейшы з якіх — адчувальны элемент. Пераўтваральнікі злучаюцца па каскаднай, дыферэнцыяльнай і кампенсацыйнай схемах. Найб. Пашыраны маштабныя і функцыянальныя вымяральныя пераўтваральнікі. Маштабныя (напр., дзялільнікі частаты і напружання, трансфарматары вымяральныя) мяняюць маштаб велічыні, якая вымяраецца, без змены яе фіз. прыроды. Гэтыя вымяральныя пераўтваральнікі пашыраюць межы вымярэнняў сродкамі вымяральнай тэхнікі. Функцыянальныя вымяральныя пераўтваральнікі (напр., тэрмарэзістары, фотаэлементы) пераўтвараюць велічыню той ці іншай фіз. прыроды ў функцыянальна звязаны з ёй сігнал (звычайна электрычны). Такімі вымяральнымі пераўтваральнікамі можна вымяраць разнастайныя неэл. велічыні. Асобны клас складаюць аперацыйныя вымяральныя пераўтваральнікі, якія выконваюць над велічынямі пэўныя матэм. аперацыі (інтэграванне, дыферэнцыраванне і інш.). Асн. характарыстыкі вымяральных пераўтваральнікаў: від функцыянальнай залежнасці паміж уваходнай і выходнай велічынямі, адчувальнасць і парог адчувальнасці, хібнасць.

У.М.Сацута.

т. 4, с. 315

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МО́МАНТ І́МПУЛЬСУ,

фізічная велічыня, якая характарызуе меру вярчальнага руху цела (сістэмы цел) адносна пункта або восі. Паняцце «М.і.» дастасавальнае таксама да эл.-магн., гравітацыйнага і інш. фізічных палёў. Выкарыстоўваецца пры рашэнні многіх задач механікі, фізікі і тэхнікі.

М.і. матэрыяльнага пункта з імпульсамі r адносна цэнтра (полюса) O роўны вектарнаму здабытку: L = r × p , дзе r — радыус-вектар пункта, праведзены з цэнтра O. Для сістэмы n такіх пунктаў L = i=1 n ri × pi і адносна восі вярчэння выражаецца таксама праз вуглавую скорасць ω і момант інерцыі I дадзенай сістэмы (напр., цвёрдага цела) адносна гэтай восі: L = I ω . Змены М.і. сістэмы цел адбываюцца пад уздзеяннем толькі знешніх сіл і залежаць ад іх моманту M (гл. Момант сілы). З 2-га закону Ньютана (гл. Ньютана законы механікі) вынікае dL / dt = M . Калі M = 0 будзе пастаянным і мае месца закон захавання М.і. (гл. Захавання законы). Роўнасць M = 0 мае таксама месца пры руху пункта (цела) ў полі цэнтральных сіл, пры гэтым яго рух падпарадкоўваецца закону плошчаў (гл. Кеплера законы), што выкарыстоўваецца ў нябеснай механіцы, тэорыі руху ШСЗ, касм. лятальных апаратаў і інш. Большасці элементарных часціц уласцівы ўласны, унутраны М.і. (гл. Спін). Адзінка М.і. ў СІкілаграм-метр у квадраце за секунду.

т. 10, с. 516

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПАДВО́ДНАЯ ЛО́ДКА,

баявы карабель, здольны апускацца і працяглы час дзейнічаць ў падводным становішчы. Прызначаны для знішчэння караблёў і суднаў праціўніка, паражэння яго наземных аб’ектаў, пастаноўкі мінных загарод, вядзення разведкі, высадкі дыверсійных груп і выканання інш. задач, што патрабуюць скрытнасці і раптоўнасці. Існуюць таксама П.л. для навук. даследаванняў.

Першы эскіз праекта П.л. зрабіў Леанарда да Вінчы. Спробы пабудовы П.л. зроблены ў Вялікабрытаніі галандскім вучоным К. ван Дрэбелем (1620), у Расіі Я.Ніканавым (1724), у Паўн. Амерыцы Д.Бушнелем (1776), у Францыі Р.Фултанам (1801), у Германіі В.Баўэрам (1850). Мінскі дваранін К.Г.Чарноўскі прапанаваў праект метал. П.л. з перыскопам (1829), які рэалізаваў К.А.Шыльдэр (1834). Да пач. 20 ст. многія марскія дзяржавы пачалі буд-ва баявых П.л. Шырока выкарыстоўваліся ў 1-ю і 2-ю сусв. войны (гл. Падводная вайна).

П.л. мае стальны герметычны абцякальны корпус цыгара-, шара- ці кроплепадобнай формы Бывае аднакорпуснай (без лёгкага корпуса), паўтаракорпуснай (лёгкім корпусам часткова ахопліваецца моцны корпус) і двухкорпуснай (моцны корпус ахоплены лёгкім корпусам). Моцны корпус здольны вытрымаць вонкавы ціск вады на вял. глыбіні. Пл. ўнутры падзелена воданепранікальнымі перагародкамі на 4—8 адсекаў. У моцным корпусе размяшчаюцца экіпаж, зброя, механізмы, розныя сістэмы і ўстройствы, паліва, запасы прэснай вады і інш. Лёгкі корпус служыць для надання П.л. абцякальных абводаў, размяшчэння цыстэрнаў, трубаправодаў, якарных і інш. прыстасаванняў. Для апускання П.л. баластныя цыстэрны запаўняюць вадой, для ўсплывання іх прадзімаюць сціснутым паветрам. Пл. пад вадой кіруюць верт. (па напрамку) і гарыз. (па глыбіні) рулямі. Паводле гал. энергет. установак Пл падзяляюцца на атамныя і дызельныя (дызель-акумулятарныя). Атамная мае ядз. энергет. ўстаноўку, можа знаходзіцца пад вадой некалькі месяцаў; дызельная ў надводным стане рухаецца з дапамогай дызеляў, пад вадой — электрарухавікоў, што сілкуюцца ад акумулятарных батарэй. Для сачэння за гарызонтам, вадой і паветрам П.л. мае перыскоп. Паводле асн. ўзбраення П.л. падзяляюцца на тарпедныя, ракетныя (з міжкантынент. балістычнымі або крылатымі) і ракетна-тарпедныя, паводле прызначэння — на стратэг. і шматмэтавыя. Аснашчаны гідраэлектроннай, радыёэлектроннай, радыёлакацыйнай і інш. апаратурамі. Дызельныя Пл. (водазмяшчэнне да 10 тыс. тон) маюць глыбіню апускання да 300 м, скорасць руху пад вадой 20 вузлоў (37 км/гадз); атамныя стратэг. (водазмяшчэнне да 26 тыс. т) — глыбіня апускання да 500 м і больш, скорасць руху пад вадой да 36 вузлоў (да 66,7 км/гадз). Гал. кірункі развіцця і ўдасканалення П.л.: павелічэнне глыбіні апускання, скорасці ходу, далёкасці і аўтаномнасці падводнага плавання, зніжэнне шуму, удасканаленне ўзбраення, радыёэлектроннага абсталявання і інш. П.л. знаходзяцца на ўзбраенні ЗША, Расіі, Кітая і інш.

Л.А.Пенязь, В.М.Пташнік.

Атамная падводная лодка «Акула» (Расія).
Разрэз атамнай ракетнай падводнай лодкі тыпу «Агайо» (ЗША): 1 — баластныя цыстэрны; 2 — адсек галоўных і дапаможных агрэгатаў; 3 — рэактарны адсек; 4 — ракетны адсек; 5 — навігацыйныя прылады; 6 — жылыя памяшканні; 7 — цэнтральны пост; 8 — акумулятарныя батарэі; 9 — тарпедны адсек; 10 — гідраакустычная антэна; 11 — перыскоп і антэна.

т. 11, с. 490

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСТРАФІ́ЗІКА,

раздзел астраноміі, які вывучае фізічную будову, хімічны састаў і развіццё нябесных целаў. Узнікла ў сярэдзіне 19 ст. ў выніку выкарыстання ў астраноміі спектральнага аналізу, фатаграфіі і фотаметрыі, што дало магчымасць вызначаць т-ру атмасфер Сонца і зорак, іх магнітныя палі, скорасць руху ўздоўж праменя зроку, характар вярчэння зорак і інш. Асн. раздзелы астрафізікі: фізіка Сонца, фізіка зорных атмасфер і газавых туманнасцяў, тэорыя ўнутранай будовы і эвалюцыі зорак, фізіка планет і інш. Тэарэтычная астрафізіка вывучае асобныя нябесныя аб’екты (планеты, зоркі, пульсары, квазары, галактыкі, скопішчы галактык і інш.) і агульныя фіз. прынцыпы астрафіз. працэсаў з мэтай устанаўлення агульных законаў развіцця матэрыі ў Сусвеце. Практычная астрафізіка распрацоўвае інструменты, прылады і метады даследаванняў. Крыніцы атрымання інфармацыі пра нябесныя целы: эл.-магн. выпрамяненне (гама-, рэнтгенаўскае, ультрафіялетавае, бачнае, інфрачырвонае і радыёвыпрамяненне); касм. прамяні, якія дасягаюць атмасферы Зямлі і ўзаемадзейнічаюць з ёю; нейтрына і антынейтрына; гравітацыйныя хвалі, што ўзнікаюць пры выбухах масіўных зорак. Значны ўклад у развіццё Астрафізікі зрабілі А.А.Белапольскі, М.М.Гусеў, Ф.А.Брадзіхін, В.Я.Струвэ, Г.А.Ціхаў (Расія), Г.Фогель, К.Шварцшыльд (Германія), У.Кэмпбел, Э.Пікерынг, Э.Хабл (ЗША), А.Эдынгтан (Англія), В.А.Амбарцумян (СССР) і інш. Найб. значныя дасягненні сучаснай Астрафізікі — адкрыццё нябесных аб’ектаў з незвычайнымі фіз. ўласцівасцямі (нейтронныя зоркі, чорныя дзіркі, квазары).

Літ.:

Мартынов Д.Я. Курс обшей астрофизики. 4 изд. М., 1988;

Шкловский И.С. Звезды: их рождение, жизнь и смерть. 3 изд. М., 1984.

Ю.М.Гнедзін.

т. 2, с. 53

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)