ЛАГІЦЫ́ЗМ,

кірунак у асновах матэматыкі, у якім зыходныя паняцці матэматыкі зводзяцца да паняццяў логікі. Ідэі Л. прапанаваны Г.В.Лейбніцам. У сістэматызаваным выглядзе выкладзены Г.Фрэге ў кн. «Асноўныя законы арыфметыкі» (т. 1—2, 1893—1903). Ён прапанаваў звядзенне асноўнага для матэматыкі паняцця натуральнага ліку да аб’ёмаў паняццяў і распрацаваў лагічную сістэму, сродкамі якой можна было даказаць усе тэарэмы арыфметыкі. Дактрына Л. развіта Б.Раселам, які выявіў у сістэме Фрэге супярэчнасць («парадокс Расел», гл. Парадокс). У кн. «Прынцыпы матэматыкі» (т. 1—3, 1910—13) Расел і А.Н.Уайтхед прапанавалі т.зв. тэорыю тыпаў, у якой парадоксаў можна пазбегнуць пры дапамозе спец. іерархіі паняццяў. У далейшым К.Гёдэль паказаў, што сістэмы Л. няпоўныя, іх сродкамі можна сфармуляваць змястоўна правільныя, але не вырашальныя матэм. сцвярджэнні (сцвярджэнні, якія нельга даказаць і нельга абвергнуць). Сістэмы Л. садзейнічалі фарміраванню і ўдакладненню важнейшых логіка-матэм. ідэй, зрабілі значны ўплыў на развіццё матэматычнай логікі і навукі.

В.М.Пешкаў.

т. 9, с. 89

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗЛІЧЭ́ННЕ,

сістэма правіл аперыравання са знакамі пэўнага віду, якая дазваляе даць дакладнае апісанне некаторага класа задач і алгарытмы іх рашэння; спосаб утварэння якой-н. сукупнасці (мноства) элементаў на аснове правіл атрымання новых элементаў з зададзеных зыходных. Мае фундаментальны характар, як і паняцце алгарытму. Узнікла і развівалася ў рамках матэматыкі (гл. Аперацыйнае злічэнне, Варыяцыйнае злічэнне, Дыферэнцыяльнае злічэнне, Інтэгральнае злічэнне). Пазней метады пабудовы З. пачалі выкарыстоўвацца ў логіцы (гл. Алгебра логікі, Матэматычная лінгвістыка). Агульная тэорыя З. выкарыстоўваецца ў алгарытмаў тэорыі.

У матэматычнай логіцы любое З. адназначна задаецца зыходнымі элементамі (алфавітам З.), правіламі ўтварэння формул дадзенага З. (слоў ці выразаў), сукупнасцю аксіём і правіл пераўтварэння (вывядзення) яго фразеалогіі. Прыпісванне элементам З. пэўных значэнняў (гл. Семантыка лагічная) пераўтварае З. ў фармалізаваную мову. Напр., у З. выказванняў шляхам пэўнай канечнай працэдуры (доказу; улічваецца толькі праўдзівасць ці непраўдзівасць выказвання) атрымліваюць выказванні-тэарэмы (гл. Логіка выказванняў). У выніку атрымліваюць лагічную сістэму, якая фармалізуе разважанне, заснаванае на структуры складаных выказванняў у адрозненне ад унутранай структуры элементарных выказванняў. Пры З. прэдыкатаў атрымліваюць сцвярджэнні (формулы, тэарэмы) з улікам суб’ектна-прэдыкатыўнай структуры выказванняў (напр., «элемент X мае ўласцівасць P), што дае магчымасць выяўляць сувязь аб’ектаў з іх уласцівасцямі і суадносіны паміж імі, колькасна характарызаваць сувязь рэчаў, уласцівасцей і адносін з дапамогай лагічных эквівалентаў выразаў «усе», «некаторыя», «кожны» і інш. (гл. Квантары). Такое З. адпавядае логіцы прэдыкатаў, калі яно мае ўласцівасці несупярэчлівасці (кожная тэарэма агульназначная) і паўнаты (кожная агульназначная формула даказальная). З. прэдыкатаў уключае З. выказванняў і разглядаецца звычайна як яго пашырэнне шляхам фармалізацыі вывадаў, заснаваных на ўнутранай структуры выказванняў. Тэорыю З. прэдыкатаў распрацаваў ням. логік, матэматык і філосаф Г.Фрэге, чым істотна ўзбагаціў сілагістыку Арыстоцеля і традыц. сілагістыку. Абагульненне З. выказванняў — З. класаў, дзе дадаткова разглядаецца суб’ектна-прэдыкатная структура выказванняў і пры гэтым з кожным прэдыкатам (уласцівасцю) звязваецца ўся сукупнасць элементаў (клас) з разгляданай вобласці, якія маюць гэтую ўласцівасць (гл. Логіка класаў). З. класаў часам разглядаюць як фармалізаваную тэорыю мностваў, выкарыстоўваюць як дапаможны этап пры пераходзе ад З. выказванняў да З. прэдыкатаў і будуюць на базе З. выказванняў з дапамогай адпаведнай інтэрпрэтацыі яго формул.

Літ.:

Гильберт Д., Аккерман В. Основы теоретической логики: Пер. с нем. М., 1947;

Методологические проблемы развития и применения математики. М., 1985;

Жуков Н.И. Философские основания математики. 2 изд. Мн., 1990.

С.Ф.Дубянецкі.

т. 7, с. 76

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРУП ТЭО́РЫЯ,

раздзел алгебры, які вывучае ўласцівасці алгебраічных аперацый, што найчасцей сустракаюцца ў матэматыцы і яе дастасаваннях; выкарыстоўваецца таксама ў фізіцы і інш. раздзелах навукі (асабліва пры вывучэнні ўласцівасцей сіметрыі). Канчатковая мэта груп тэорыі — апісаць усе магчымыя групавыя аперацыі (гл. Група). Асновы груп тэорыі закладзены Э.Галуа (1831).

Першыя тэарэмы груп тэорыі даказаны Ж.Лагранжам у канцы 18 ст., а потым А.Кашы, Н.Абелем і інш. Напачатку груп тэорыя вывучала канечныя групы падстановак, у канцы 19 — пач. 20 ст. — канечныя групы з элементамі любой прыроды, а потым і бясконцыя і тым самым стала на абстрактны, аксіяматычны шлях развіцця і стала прыкладам для перабудовы ў пач. 20 ст. алгебры і ўсёй матэматыкі. Груп тэорыя падзяляецца на шэраг вял. раздзелаў, якія найчасцей вылучаюцца дастатковымі ўмовамі на групавую аперацыю (канечных груп тэорыя, абелевых груп тэорыя, нільпатэнтных груп тэорыя, пераўтварэнняў груп тэорыя, выяўленняў груп тэорыя і інш.) ці ўнясеннем у групу дадатковых структур, звязаных пэўным чынам з групавой аперацыяй (тапалагічных, алг. і ўпарадкаваных груп тэорыя і інш.). Асн. праблема груп тэорыі — класіфікацыя простых канечных груп, якія адыгрываюць ролю «будаўнічых блокаў» адвольнай групы; лічыцца, што такая класіфікацыя створана, аднак да сучаснага моманту (1997) дакладна выверанага тэксту яе няма.

У Беларусі сістэм. даследаванні па груп тэорыі пачалі Дз.А.Супруненка (1945; групы падстановак і матрыц), С.А.Чуніхін (1953; канечныя групы); зараз даследаванні вядуцца пад кіраўніцтвам У.П.Платонава (тапалагічныя і лінейныя алг. групы, мнагастайнасці груп), Л.А.Шамяткова (тэорыя фармацый), А.Я.Залескага (выяўленні лінейных алг. груп).

Літ.:

Платонов В.П, Рапинчук А.С. Алгебраические группы и теория чисел. М., 1991;

Супруненко Д.А. Группы подстановок. Мн., 1996;

Шеметков Л.А. Формации конечных групп. М., 1978.

Р.Т.Вальвачоў.

т. 5, с. 466

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКСІЯМАТЫ́ЧНЫ МЕ́ТАД,

спосаб пабудовы навук. тэорыі ў выглядзе сістэмы пастулатаў (аксіём) і правіл вываду (аксіяматыкі), што дае магчымасць логікавымі разважаннямі атрымліваць сцвярджэнні (тэарэмы) дадзенай тэорыі.

Узнік у работах стараж.-грэч. матэматыкаў. Напр., у «Асновах» Эўкліда праведзена ідэя атрымання асн. зместу геаметрыі з невялікай колькасці аксіём, праўдзівасць якіх лічыцца відавочнай. Адкрыццё ў 19 ст. неэўклідавых геаметрый стымулявала ўзнікненне праблем больш агульнага характару (напр., несупярэчлівасці, паўнаты і незалежнасці той ці інш. сістэмы аксіём). Гэта адкрыла шлях да фармалізаванага развіцця тэорый: пошуку інш. сістэм паняццяў (тэорый, галін ведаў), якія падпарадкоўваюцца тым жа аксіёмам, выяўлення новых інтэрпрэтацый пэўнай сістэмы аксіём, што дало магчымасць адкрываць новыя навук. факты. Д.Гільберт і яго школа спадзяваліся на аснове аксіяматычнага метаду вырашыць гал. пытанні абгрунтавання матэматыкі. Аднак вынікі аўстр. і амер. матэматыка і логіка К.Гёдэля (1931) выявілі неажыццявімасць гэтай праграмы, напр. тэарэма аб непаўнаце арыфметыкі сведчыць аб абмежаванасці аксіяматычнага метаду. У 20 ст. дзякуючы развіццю матэматычнай логікі стала магчымым аксіяматызаваць тыя сродкі логікі, з дапамогай якіх выводзяцца адны сцвярджэнні аксіяматычнай тэорыі з інш. яе сцвярджэнняў, што мае істотнае значэнне для аўтаматызацыі разумовай працы.

Сучасныя навук. тэорыі, пабудаваныя пры дапамозе аксіяматычнага метаду, наз. дэдуктыўнымі. Усе паняцці такіх тэорый (акрамя фіксаванай колькасці першапачатковых) уводзяцца пры дапамозе вызначэнняў, якія выражаюць іх змест праз першапач. паняцці. У той ці інш. меры дэдуктыўныя доказы, характэрныя для аксіяматычнага метаду, выкарыстоўваюцца ў многіх навуках, найб. у матэматыцы, логіцы, некаторых раздзелах фізікі, біялогіі і інш. Тэорыі, пабудаваныя пры дапамозе аксіяматычнага метаду, нярэдка маюць выгляд фармалізаваных сістэм, якія даюць дакладнае апісанне лагічных сродкаў вываду тэарэм з аксіём. Доказ такой тэорыі ўяўляе сабой паслядоўнасць формул, кожная з якіх з’яўляецца аксіёмай або атрымліваецца з папярэдніх формул па адным з прынятых правіл вываду. У адрозненне ад такіх фармальных доказаў уласцівасці самой фармальнай сістэмы ў цэлым вывучаюцца змястоўнымі сродкамі метатэорыі. Асн. патрабаванні да аксіяматычных фармальных сістэм: несупярэчлівасць, паўната, незалежнасць аксіём. Аксіяматычны метад — адзін з метадаў пабудовы навук. ведаў, які мае абмежаванае выкарыстанне, бо патрабуе высокага ўзроўню развіцця навук. тэорыі. Нават некаторыя дастаткова багатыя навук. тэорыі (напр., арыфметыка натуральных лікаў) не дапускаюць поўнай аксіяматызацыі. Гэта сведчыць аб немагчымасці поўнай фармалізацыі навук. ведаў.

Літ.:

Садовский В.Н. Аксиоматический метод построения научного знания // Философские вопросы современной формальной логики. М., 1962;

Столл Р. Множества. Логика: Аксиоматич. теории.: Пер. с англ. М., 1968;

Новиков П.С. Элементы математической логики. 2 изд. М., 1973.

Р.Т.Вальвачоў, У.К.Лукашэвіч.

т. 1, с. 207

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)