пакрыцці для аховы паверхні металічных вырабаў ад карозіі. Найб. пашыраныя антыкаразійныя пакрыцці: з металаў (хрому, цынку, нікелю, высакародных металаў і інш.) і іх сплаваў; з хім. злучэнняў металаў (аксіды, карбіды, нітрыды, фтарыды і інш.); з палімерных (фторпластавыя, поліэтыленавыя, поліізабутыленавыя, полівінілхларыдныя) і лакафарбавых пакрыццяў, а таксама кансервацыйныя замазкі (напр., бітум). Эфектыўнасць антыкаразійных пакрыццяў вызначаецца хім. і фазавым саставам, дасканаласцю будовы, трываласцю счаплення пакрыцця з асновай матэрыялу.
Антыкаразійныя пакрыцці бываюць анодныя ці катодныя адносна матэрыялу, які ахоўваюць. Анодныя змяншаюць, прадухіляюць карозію, катодныя могуць павялічваць яе, але пры гэтым паляпшаюць фіз.-мех. якасці матэрыялаў. Антыкаразійныя пакрыцці наносяць фарбаваннем, гальванічным, плазмавым, вакуумным, іонна-плазмавым і электрафарэтычнымі метадамі, хім. асаджэннем з газавай фазы і раствораў, плакіраваннем. Выбар метаду залежыць ад патрэбнага спалучэння матэрыялаў пакрыцця і асновы, неабходнай таўшчыні пакрыцця, магчымасці і неабходнасці яго аднаўлення ў эксплуатацыі. На Беларусі стварэннем антыкаразійных пакрыццяў займаюцца Бел. навукова-вытв. аб’яднанне парашковай металургіі, Бел.політэхн. акадэмія, Ін-т механікі металапалімерных сістэм АН Беларусі.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГЕЛІЯКАНЦЭНТРА́ТАР
(ад гелія... + канцэнтратар),
прыстасаванне для канцэнтрацыі сонечных прамянёў на невял. участку паверхні. Павышае шчыльнасць сонечнай радыяцыі ў 102—104 разоў, у месцы факусіроўкі дазваляе дасягнуць т-ры 3000 °C і болей, што дае магчымасць ажыццяўляць высокатэмпературныя тэхнал. працэсы. Выкарыстоўваецца ў геліяўстаноўках.
Складаецца з люстэркаў, увагнутых лінзаў і нясучых канструкцый. Распрацаваны тэхналогіі стварэння паўцвёрдых і надзіманых геліяканцэнтратараў з палімерных празрыстых і металізаваных плёнак. Канфігурацыі факусіруючых сістэм: парабалічныя (у т. л. з другасным адбівальнікам) і парабалацыліндрычныя канцэнтратары, лінзы Фрэнеля. Паверхні люстэркаў геліяканцэнтратара — звычайна фацэтныя перарывістыя і гладкія. Распрацоўка і стварэнне геліяканкэнтратара вядуцца ў Францыі (у 1968 уведзена сонечная печ з геліяканцэнтратарам парабалоіднага тыпу дыяметрам 54 м), Японіі, ЗША, Аўстраліі і інш. Пабудаваны шэраг сонечных энергетычных установак. У 1988 у Крыме пабудавана паратурбінная сонечная электрастанцыя магутнасцю 5 МВт. На Беларусі работы па распрацоўцы сістэм пераўтварэння канцэнтраванай сонечнай энергіі з выкарыстаннем цеплавых труб вядуцца ў акад.навук. комплексе «Ін-т цепла- і масаабмену імя А.В.Лыкава». Гл. таксама Геліятэхніка.
Літ.:
Драгун В.Л., Конев С.В. В мире тепла. Мн., 1991;
Мак-Вейг Д. Применение солнечной энергии: Пер. с англ. М., 1981. У.Л.Драгун, С.У.Конеў.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІДРАІЗАЛЯЦЫ́ЙНЫЯ МАТЭРЫЯ́ЛЫ,
матэрыялы для аховы (гідраізаляцыі) буд. канструкцый, будынкаў і збудаванняў ад шкоднага ўздзеяння вады і хімічна агрэсіўных водных раствораў. Падзяляюцца на проціфільтрацыйныя (герметызавальныя) і процікаразійныя; паводле віду асн. матэрыялу — на нафтабітумныя, дзёгцевыя, палімерныя, армацэментавыя і інш. (у іх састаў могуць уводзіцца мінер. напаўняльнікі і мадыфікаваныя дабаўкі — растваральнікі, стабілізатары, пластыфікатары, антысептыкі, структураўтваральнікі і г. д.). Бываюць абклеечныя, абмазачныя, цвёрдыя і пластычныя. Могуць арміравацца стальнымі або палімернымі валокнамі, метал. або шкласеткай, шклотканінай і інш.
Абклеечныя гідраізаляцыйныя матэрыялы — руберойд, пергамін, гідраізол, шклоруберойд, металаізол і інш. рулонныя матэрыялы, аснова якіх (з кардону, шкловалакна, метал. фольгі і інш.) прамочана або пакрыта бітумам ці дзёгцевымі рэчывамі. Укладваюць у некалькі слаёў, змацоўваюць масцікай. Абмазачныя гідраізаляцыйныя матэрыялы — гарачыя або халодныя бітумныя і дзёгцевыя масцікі, бітумныя лакі і фарбы з напаўняльнікамі, пасты і эмульсіі (гл.Лакафарбавыя матэрыялы). Выкарыстоўваюць для ізаляцыі трубаправодаў, падземнай часткі жалезабетонных канструкцый, для аховы метал. канструкцый ад карозіі. Цвёрдыя гідраізаляцыйныя матэрыялы — тынк цэментавы (з воданепрымальнымі і ўшчыльняльнымі дабаўкамі), асфальтавы і інш.; пліты і маты асфальтавыя (арміраваныя і неарміраваныя, гарачапрасаваныя); прыродныя, керамічныя і бетонныя камяні, прамочаныя арган. вяжучымі рэчывамі; жалезабетонныя вырабы (бетоны высокай шчыльнасці), а таксама лісты са сталі і інш. Выкарыстоўваюць для аховы фундаментаў і сцен будынкаў, тунэляў, рэзервуараў, гідратэхн. збудаванняў. Пластычныя гідраізаляцыйныя матэрыялы падзяляюцца на масцікавыя (аналагічныя абмазачным, але наносяцца большай колькасцю слаёў), плітачныя (сумесь бітумаў з напаўняльнікамі, арміраваная кардонам, тканінамі, метал. сеткамі) і асфальтавыя (асфальтавая масціка з напаўняльнікамі, выкарыстоўваецца для ізаляцыі праезнай часткі мастоў, падлогі ў міжпаверхавых перакрыццях і г.д.). Пашыраны пакрыцці з тэрмапластаў — палімерных плёнак (наносяць на трубы для іх гідраізаляцыі і інш.). Гідраізаляцыйныя матэрыялы выбіраюць з улікам геал. і гідрагеал. умоў, рэжыму падземных вод, важнасці збудаванняў і асаблівасці іх эксплуатацыі, ступені небяспекі ад уцечкі вадкасці з ёмістасці і інш.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІДРАІЗАЛЯ́ЦЫЯ
(ад гідра... + ізаляцыя),
ахова канструкцый, будынкаў і збудаванняў ад пранікнення і шкоднага ўздзеяння вады і хімічна агрэсіўных вадкасцей. Для гідраізаляцыі выкарыстоўваюць гідраізаляцыйныя матэрыялы, ахоўныя пакрыцці, спец. канструктыўныя элементы або воданепранікальныя слаі паверхні збудаванняў, ушчыльненні дэфармацыйных швоў, стыкаў у зборных збудаваннях і інш. Адрозніваюць гідраізаляцыю проціфільтрацыйную (герметызавальную) і процікаразійную; у залежнасці ад віду асн. матэрыялу — бітумную, палімерную, металічную, армацэментную і інш.; ад віду ахоўнага пакрыцця — цвёрдую, абмазачную, пластычную, абклеечную, камбінаваную.
Проціфільтрацыйнай гідраізаляцыяй папярэджваюць пранікненне вады ў падземныя і падводныя збудаванні (падвалы, рэзервуары, шахты, тунэлі і інш.), прасочванне праз падпорныя гідратэхн. збудаванні (бетонныя плаціны), выцяканне яе (з рэзервуараў, адстойнікаў) і г.д. Процікаразійнай гідраізаляцыяй ахоўваюць канструкцыі ад грунтавых і сцёкавых вод, атм. вільгаці, а таксама ад блукальных токаў, што выклікаюць карозію (трубаправодаў, апор ЛЭП, падземных канструкцый і інш.). Цвёрдая гідраізаляцыя робіцца: пакрыццём ізалюемай паверхні слоем шчыльнага бетону або тынку, прыгатаваных з рознымі дабаўкамі-ўшчыльняльнікамі; жалязненнем (уціранне сухога цэменту ва ўвільготненыя або ў толькі што ўкладзеныя і змочаныя вадой бетонныя паверхні); таркрэтаваннем (нанясенне слоя цэментнага раствору або дробназярністага бетону на паверхню збудавання цэмент-пушкай, а на ўнутр. паверхню труб — цэнтрыфугаваннем). Абмазачная гідраізаляцыя ў выглядзе тонкага пакрыцця наносіцца на паверхню ў халодным або гарачым стане фарбавальнымі апаратамі (электрафарбапульты, распыляльнікі і інш.) ці пэндзлем. Бывае адна- і мнагаслойная, нармальнага і ўзмоцненага тыпу. Абклеечную гідраізаляцыю ствараюць у выглядзе воданепранікальнай масы з бітуму або асфальтавай масцікі, арміраванай слаямі шклотканіны, руберойду, мешкавіны, тканіны з узмацняльнай абгорткай і без яе, ліпкіх палімерных стужак і інш. Камбінаваная гідраізаляцыя — камбінацыя пералічаных тыпаў. Ужываецца таксама гідраізаляцыя, якая манціруецца (да канструкцый прымацоўваюць зваркай і склейваннем метал. або пластмасавыя лісты, сегменты і да т.п.), абліцовачная (воданепранікальнымі пліткамі, керамічнымі блокамі і інш. вырабамі, якія наклейваюцца з дапамогай масцік), насычальная (канструкцыі з порыстых матэрыялаў насычаюць вяжучымі рэчывамі), засыпная (у воданепранікальныя слаі і пустоты канструкцый засыпаюць гідрафобныя сыпкія матэрыялы). Тып гідраізаляцыі і неабходныя для яе гідраізаляцыйныя матэрыялы выбіраюць з улікам уласцівасцей гэтых матэрыялаў (старэнне, цеплаўстойлівасць, дэфармацыйная здольнасць і інш.), а таксама спецыфікі работы збудавання. Для забеспячэння нармальнай эксплуатацыі гідраізаляцыі ажыццяўляюць кантроль якасці пакрыцця знешнім аглядам, таўшчынямерамі, дэфектаскопамі, адгезіметрамі і інш.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
КУ́ПАЛ (італьян. cupola купал, скляпенне ад лац. cupula бочачка) у архітэктуры, прасторавая апорная канструкцыя пакрыццяў (або само пакрыццё), форма якой блізкая да паўсферы ці іншай паверхні вярчэння. Перакрывае без апор значныя па памерах памяшканні пераважна круглыя, шматвугольныя, эліптычныя ў плане.
Вядомы са старажытнасці, першапачаткова ў выглядзе т. зв. несапраўдных К., дзе гарыз. рады муроўкі навісалі адзін над адным і не перадавалі сценам намаганняў распору (будынкі ў г. Эшнуна ў Двухрэччы, цяпер Ірак, пач. 3-га тыс. да н.э.). Удасканалены ў архітэктуры Стараж. Рыма (Пантэон, каля 125), Візантыі, Еўропы, Каўказа (паявіліся знешнія абалонкі, канфігурацыя якіх адрознівалася ад уласна К.). Быў пашыраны ў рус. сярэдневяковай архітэктуры, у збудаваннях Сярэдняй Азіі (маўзалей Гур-Эмір у Самаркандзе, 1404). Сярод выдатных купальных збудаванняў — сабор Санта-Марыя дэль Ф’ёрэ ў Фларэнцыі (1420—36, арх. Ф.Брунелескі), царква Сан-Ларэнца ў Турыне (абодва Італія; 1668—87, арх. Г.Гварыні), Казанскі сабор у Санкт-Пецярбургу (1801—11, арх. А.Вараніхін) і інш.
На Беларусі вядомы з 11—12 ст. Ужываліся ў крыжова-купальных храмах (Сафійскі сабор і Спаса-Ефрасіннеўская царква ў Полацку, Благавешчанская царква ў Віцебску). Пашыраны ў архітэктуры стыляў рэнесансу, барока, дзе адыгрывалі важную ролю ў інтэр’еры і вонкавым выглядзе збудаванняў. Ставілі К. над сяродкрыжжам крыжова-купальных базілік (касцёлы езуітаў у Нясвіжы і Гродне, Успенскі сабор у в. Жыровічы Слонімскага р-на Гродзенскай вобл.). З канца 18 ст. шырока выкарыстоўваліся ў культавай і грамадз. архітэктуры класіцызму (палац і Петрапаўлаўскі сабор у Гомелі). Купальныя вярхі былі пашыраны і ў драўляным дойлідстве 18—19 ст. (Міхайлаўская царква ў в. Рубель Столінскага р-на Брэсцкай вобл.). У 20 ст. з развіццём маналітнага і зборнага жалезабетону, танкасценных скляпенняў-абалонак і метал. канструкцый павялічылася разнастайнасць структур і форм К.: рабрыстыя, рабрыста-кальцавыя, сеткавыя, з хвалістай унутр. паверхняй, «геадэзічныя» (утвораныя са стандартных шматвугольных элементаў), зборныя і інш. Жалезабетоннымі К. накрыты будынкі цыркаў у Мінску і Гомелі. Ствараюцца новыя тыпы К. з палімерных матэрыялаў, з падвойнай надзіманай абалонкай і інш.
Літ.:
Кузнецов А.В. Тектоника и конструкция центрических зданий. М., 1951;
Гохарь-Хармандарян И.Г. Большепролетные купольные здания. М., 1972.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЫСОКАМАЛЕКУЛЯ́РНЫЯ ЗЛУЧЭ́ННІ,
палімеры, хімічныя злучэнні з малекулярнай масай ад некалькіх тысяч да дзесяткаў мільёнаў. Малекулы высокамалекулярных злучэнняў (макрамалекулы) складаюцца з тысяч атамаў, звязаных хім. сувязямі. Паводле паходжання падзяляюць на прыродныя, ці біяпалімеры (напр., бялкі, нуклеінавыя кіслоты, поліцукрыды), і сінтэтычныя (напр., поліэтылен, поліаміды), паводле саставу — на неарганічныя палімеры, арганічныя і элементаарганічныя палімеры.
У залежнасці ад размяшчэння ў макрамалекуле атамаў і груп атамаў (манамерных звёнаў) адрозніваюць высокамалекулярныя злучэнні: лінейныя, макрамалекулы якіх утвараюць адкрыты лінейны ланцуг (напр., каўчук натуральны) ці выцягнутую ў ланцуг паслядоўнасць цыклаў (напр., цэлюлоза); разгалінаваныя, макрамалекулы якіх — лінейны ланцуг з адгалінаваннямі (напр., крухмал); сеткавыя — трохвымерная сетка з адрэзкаў высокамалекулярных злучэнняў ланцуговай будовы (напр., ацверджаныя фенола-альдэгідныя смолы). Макрамалекулы аднолькавага хім. саставу могуць быць пабудаваны з манамерных звёнаў рознай прасторавай канфігурацыі (гл.Прасторавая ізамерыя). Палімеры з адвольным чаргаваннем стэрэаізамерных звёнаў наз. атактычнымі. Стэрэарэгулярныя палімеры складаюцца з аднолькавых ці розных, але размешчаных у ланцугу ў пэўнай паслядоўнасці стэрэаізамераў. Паводле тыпу манамерных звёнаў палімеры падзяляюць на гомапалімеры (палімер утвораны адным манамерам, напр. поліэтылен) і супалімеры (палімер утвораны з розных манамерных звёнаў, напр.бутадыен-стырольныя каўчукі). Асн.фіз.-хім. і мех. ўласцівасці высокамалекулярных злучэнняў: здольнасць утвараць высокатрывалыя валокны і плёнкі палімерныя, набракаць перад растварэннем і ўтвараць высокавязкія растворы, здольнасць да вял. абарачальных дэфармацый (высокаэластычнасць). Гэтыя ўласцівасці абумоўлены высокай малекулярнай масай, ланцуговай будовай і гнуткасцю макрамалекул. У лінейных высокамалекулярных злучэннях яны выяўлены найб. поўна. Трохвымерныя высокамалекулярныя злучэнні з вял. частатой сеткі нерастваральныя, няплаўкія і не здольныя да высокаэластычных дэфармацый. Высокамалекулярныя злучэнні могуць існаваць у крышт. і аморфным фазавым стане. Аморфныя высокамалекулярныя злучэнні акрамя высокаэластычнага могуць знаходзіцца ў шклопадобным і вязкацякучым станах. Высокамалекулярныя злучэнні з нізкай (ніжэй за пакаёвую) т-рай пераходу з шклопадобнага ў высокаэластычны стан наз.эластамерамі, з высокай — пластыкамі (гл.Пластычныя масы).
Палімеры маюць малую шчыльнасць (900—2200 кг/м³), нізкі каэф. трэння і малы знос, выдатныя дыэл. і аптычныя ўласцівасці, высокую хім. ўстойлівасць да к-т, шчолачаў і інш. агрэсіўных рэчываў. Прыродныя высокамалекулярныя злучэнні, якія ўтвараюцца ў клетках жывых арганізмаў у выніку біясінтэзу, вылучаюць з расліннай і жывёльнай сыравіны. Сінт. высокамалекулярныя злучэнні атрымліваюць полімерызацыяй і полікандэнсацыяй. Асн. тыпы палімерных матэрыялаў — пластычныя масы, гума, валокны хімічныя, лакі, фарбы, эмалі, клеі, герметыкі, іонаабменныя смолы выкарыстоўваюць у розных галінах нар. гаспадаркі і побыце. Біяпалімеры складаюць аснову жывых арганізмаў і ўдзельнічаюць ва ўсіх працэсах іх жыццядзейнасці.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БІЯСІ́НТЭЗ
(ад бія... + сінтэз),
утварэнне ў жывых арганізмах складаных арган. рэчываў з больш простых злучэнняў пры ўдзеле ферментаў. Гал. функцыі біясінтэзу — ажыццяўленне актыўнага абмену рэчываў, утварэнне і аднаўленне структурных частак клетак і тканак (гл.Анабалізм), што цесна звязана з адначасовым процілеглым працэсам расшчаплення складаных арган. рэчываў на больш простыя (гл.Катабалізм), якія з’яўляюцца крыніцай «будаўнічага матэрыялу» і энергіі для біясінтэзу. У выніку біясінтэзу павялічваюцца памеры малекул, ускладняецца іх структура і павышаецца энергет. патэнцыял.
Пачатковыя пастаўшчыкі энергіі для біясінтэзу — зялёныя расліны і фотасінтэзавальныя бактэрыі, што акумулююць сонечную энергію (гл.Фотасінтэз), а таксама некаторыя інш. бактэрыі, якія выкарыстоўваюць энергію акіслення неарган. злучэнняў (гл.Хемасінтэз). З дапамогай гэтай энергіі аўтатрофныя і хематрофныя арганізмы здольны сінтэзаваць простыя арган. рэчывы з неарган. (гл.Асіміляцыя). Усе іншыя (гетэратрофныя) арганізмы выкарыстоўваюць гатовыя арган. рэчывы як матэрыял і крыніцу энергіі для свайго біясінтэзу (гл.Акісляльнае фасфарыліраванне). Асн. крыніца энергіі для біясінтэзу — распад макраэргічных злучэнняў, пераважна адэназінтрыфосфарнай кіслаты (гл.Біяэнергетыка). Для біясінтэзу некаторых клетачных кампанентаў патрабуюцца таксама багатыя энергіяй атамы вадароду, донарам якіх з’яўляецца нікацінамідадэніндынуклеатыдфасфат (НАДФ). У ходзе біясінтэзу кожны аднаклетачны арганізм, як і кожная клетка мнагаклетачнага арганізма, самастойна сінтэзуе рэчывы, што складаюць яго. Асноўныя з іх — полінуклеатыды (ДНК і РНК), поліцукрыды і бялкі, малекулы якіх разнастайныя па структуры і найбольш складаныя. Утварэнне палімерныхарган. злучэнняў з больш простых манамераў суправаджаецца ў кожным выпадку рэакцыяй дэгідратацыі (вывядзеннем малекул вады з рэагуючых злучэнняў). Палімерызацыя адбываецца або «з галавы», або «з хваста». Калі палімерызацыя ідзе «з галавы», актываваная сувязь знаходзіцца на канцы палімеру, што бесперапынна расце, і павінна рэгенерыраваць пры кожным далучэнні манамеру. У гэтым выпадку кожны манамер прыносіць з сабой актываваную групу, якая будзе выкарыстана ў рэакцыі з наступным манамерам дадзенай паслядоўнасці. Калі палімерызацыя ідзе «з хваста», актывізаваная сувязь, якую нясе з сабой новы манамер, будзе выкарыстана для далучэння гэтага манамеру да палімернага ланцуга. Палімерызацыя полінуклеатыдаў і некаторых простых поліцукрыдаў ідзе «з хваста», бялкоў — «з галавы». Характар біясінтэзу, які адбываецца ў клетцы, вызначаецца спадчыннай інфармацыяй, што «закадзіравана» ў геноме.
Біясінтэз можа быць ажыццёўлены і ў эксперым. умовах. У прам-сці шырока выкарыстоўваецца мікрабіял. сінтэз — біясінтэз мікраарганізмамі біялагічна актыўных рэчываў (вітамінаў, некаторых гармонаў, антыбіётыкаў, амінакіслот, бялкоў і інш.). Многія інш. рэакцыі біясінтэзу ўлічваюцца або выкарыстоўваюцца ў розных галінах біятэхналогіі.
Літ.:
Биосинтез белка и нуклеиновых кислот. М., 1965;
Молекулярная биология клетки: Пер. с англ. Т. 1. 2 изд. М., 1994;
Ленинджер А. Основы биохимии: Пер. с англ. Т. 2. М., 1985.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АКАДЭ́МІЯ НАВУ́К БЕЛАРУ́СІ,
вышэйшая навуковая самакіравальная ўстанова, якая ажыццяўляе і каардынуе фундаментальныя і пошукавыя даследаванні ў Рэспубліцы Беларусь па асн. кірунках прыродазнаўчых, тэхн. і грамадскіх навук. Заснавана 1.1.1929 у Мінску на базе Інстытута беларускай культуры (Інбелкульта) паводле пастановы ЦВК і СНКБССР ад 13.10.1928. Да 1936 наз. Беларуская АН (БАН), да 1991 — АНБССР. У 1932 у Акадэміі было 14 ін-таў. У канцы 1920-х — 1930-я г. па надуманых абвінавачаннях было рэпрэсіравана больш як 140 супрацоўнікаў АН (у т. л. акадэмікі Г.І.Гарэцкі, П.В.Горын, А.Д.Дубах, М.М.Дурнаво, В.Ю.Ластоўскі, Я.Лёсік, С.М.Некрашэвіч, У.І.Пічэта, А.І.Смоліч, Б.А.Тарашкевіч, М.М.Шчакаціхін і інш.), што адмоўна адбілася на развіцці ўсіх навук. кірункаў. Найбольш пацярпелі гуманіт. навукі, дзе поруч са знішчэннем буйных бел. грамадазнаўцаў ліквідавана і распрацаваная імі навук. метадалогія, месца якой у гуманіт. даследаваннях 1930—50-х г. занялі празмерна гнуткія прынцыпы тагачаснай паліт. практыкі. У 1941 у АН было 12 н.-д. устаноў, у т. л. 9 ін-таў. У гады Вял. Айч. вайны АН панесла вял. людскія, матэрыяльныя і культ. страты (толькі матэрыяльны ўрон склаў больш за 300 млн. руб; у тагачасных цэнах). За 1-е пасляваеннае 10-годдзе адноўлены даваен. навук. ўстановы і створаны новыя. Сусв.навук.-тэхн. рэвалюцыя ў 1960—80-я г. дала значны імпульс далейшаму развіццю АН, абумовіла стварэнне многіх новых устаноў фізіка-матэм. і тэхн. профілю. На 1.1.1991 у АН працавалі 17 093 чал., у т. л. 5967 навук. работнікаў, 55 акад., 96 чл.-кар., 375 д-роў і 2557 канд.навук. Перабудовачныя працэсы 1980-х г. і эканам. крызіс пач. 1990-х г. паўплывалі на змяншэнне аб’ёму даследаванняў. На 1.1.1995 у складзе АН 11 218 супрацоўнікаў, у т. л. 4747 навук. работнікаў, 65 акад., 99 чл.-кар., 444 д-ры і 2139 канд.навук. Кіраванне работай АН ажыццяўляюць прэзідэнт і выбарны калегіяльны орган — Прэзідыум АН. Мае 6 аддзяленняў, якія аб’ядноўваюць н.-д. ўстановы па розных галінах навукі.
У аддзяленні фізікі, матэматыкі і інфарматыкі (ін-ты: фізікі; малекулярнай і атамнай фізікі; прыкладной оптыкі; матэматыкі; фізікі цвёрдага цела і паўправаднікоў; электронікі; тэхнічнай кібернетыкі; аддзел аптычных праблем інфарматыкі; Вылічальны цэнтр) вядуцца распрацоўкі ў галіне лазернай фізікі, аптычных метадаў даследавання прыродных і штучных асяроддзяў, фундаментальных узаемадзеянняў у фізіцы палёў, часціц і атамных ядраў, фізікі плазмы і плазменных тэхналогій, стварэння новых перспектыўных матэрыялаў, дыферэнцыяльных ураўненняў, вылічальнай матэматыкі, алгебры, новых інфарм. тэхналогій і інш. У аддзяленні фізіка-тэхнічных праблем машынабудавання і энергетыкі (ін-ты: праблем энергетыкі; радыяцыйных фізіка-хімічных праблем; радыеэкалагічных праблем; фізіка-тэхнічны; прыкладной фізікі; тэхналогіі металаў; тэхнічнай акустыкі; механікі металапалімерных сістэм; надзейнасці машын; акад.навук. комплекс «Ін-т цепла- і масаабмену імя А.В.Лыкава»; інжынерны цэнтр «Плазматэг»; навук-тэхн. цэнтр «Нетрадыцыйная энергетыка і энергазберажэнне», навук. цэнтр праблем механікі машын і аддзел праблем рэсурсазберажэння) вядуцца даследаванні ў галіне цепла- і масанераносу ў капілярна-порыстых целах, дысперсных сістэмах, рэалагічных асяроддзях, турбулентных патоках і ў нізкатэмпературнай плазме, фізікі, хіміі і трыбалогіі паверхні, тэхналогіі атрымання і апрацоўкі металічных, палімерных, кампазіцыйных і звышцвёрдых матэрыялаў, механікі мабільных машын і надзейнасці, цеплафізікі ліцейных працэсаў, распрацоўкі фізічных прынцыпаў і сродкаў дыягностыкі неразбуральнага кантролю рэчываў, матэрыялаў, вырабаў і тэхпрацэсаў і інш. У аддзяленні хімічных і геалагічных навук (ін-ты: агульнай і неарганічнай хіміі; біяарганічнай хіміі; геалагічных навук; праблем выкарыстання прыродных рэсурсаў і экалогіі; фізіка-арганічнай хіміі, Рэсп.навук.-тэхн. цэнтр «Экамір»; Хіміка-тэхналагічны цэнтр) вядуцца даследаванні ў галіне фізіка-хіміі палімераў і арган. сінтэзу, сінтэзу высокаактыўных і селектыўных адсарбентаў і каталізатараў, прыроды паверхневых з’яў і дысперсных сістэм, структурных асноў функцыянавання бялкоў і нуклеінавых кіслот, распрацоўкі рацыянальных падыходаў да накіраванага сінтэзу і вылучэння біялагічна важных злучэнняў, ацэнкі, прагназавання і аптымізацыі ўздзеяння натуральных і антрапагенных фактараў на прыроднае асяроддзе, стварэння рэсурсазберагальных тэхналогій здабычы, перапрацоўкі і выкарыстання цвёрдых гаручых выкапняў, будовы і эвалюцыі зямной кары і прыроднага асяроддзя на тэр. Беларусі. У аддзяленні біялагічных навук (ін-ты: генетыкі і цыталогіі; заалогіі; лесу; мікрабіялогіі; радыебіялогіі; фотабіялогіі; эксперыментальнай батанікі; Цэнтр. батанічны сад) вядуцца даследаванні ў галіне дынамікі супольнасцяў раслін і жывёл Беларусі, біял. рэсурсаў, асновы іх узнаўлення, рацыянальнага выкарыстання і аховы, генетычных і фізіёлага-біяхімічных праблем селекцыі, прадукцыйнасці і імунітэту раслін, генетычнай і клетачнай інжынерыі раслін і мікраарганізмаў, выкарыстання мікраарганізмаў у біятэхналогіі, сельскай гаспадарцы і аховы навакольнага асяроддзя, экалагічнай абстаноўкі, абумоўленай катастрофай на Чарнобыльскай АЭС, медыка-біял. і генетычных вынікаў радыяцыі, спосабаў зніжэння яе шкоднага ўздзеяння і інш. У аддзяленні гуманітарных навук (ін-ты: гісторыі; літаратуры; мастацтвазнаўства, этнаграфіі і фальклору; мовазнаўства; сацыялогіі; філасофіі і права; эканомікі; аддзел навук. інфармацыі па гуманітарных навуках) вядуцца даследаванні ў галіне вывучэння гісторыі бел. народа, яго мовы і л-ры, заканамернасцяў развіцця бел. мастацтва, матэрыяльнай культуры і побыту народа, гісторыі і тэорыі вусна-паэт. творчасці, праблем этн. і мед. антрапалогіі беларусаў, распрацоўкі сацыялагічнай мадэлі сац. і паліт. працэсаў ва ўмовах пераходу грамадства ад таталітарнай да дэмакратычнай сістэмы рыначнага тыпу, вывучэння гісторыі філас. і паліт.-прававой думкі, заканамернасцяў грамадскага развіцця, фарміравання дэмакр.дзярж. і паліт. сістэмы Рэспублікі Беларусь, распрацоўкі нац.-дзярж. мадэлі эканомікі Беларусі і механізму яе дзярж. рэгулявання і інш. У аддзяленні праблем медыцыны (ін-ты біяхіміі; фізіялогіі) вядуцца даследаванні ў галіне асаблівасцяў уздзеяння фактараў сучасных экасістэм і ладу жыцця на здароўе чалавека; вывучаюць праблемы аховы генафонду насельніцтва краіны, патагенезу асн. захворванняў чалавека, стварэння новых метадаў дыягностыкі, прафілактыкі і лячэння сардэчна-сасудзістых, анкалагічных, нервовых, эндакрынных і інш. хвароб. Некаторыя ўстановы АН знаходзяцца або маюць свае рэгіянальныя аддзяленні ў абл. цэнтрах.
Для забеспячэння ўкаранення вынікаў навук. даследаванняў і навук.-тэхн. распрацовак у АН створана доследна-канструктарская база, у складзе якой: Цэнтр. канструктарскае бюро, канструктарскае аддзяленне з доследнымі вытв-сцямі; 10 спец. канструктарскіх бюро з доследнымі вытв-сцямі пры ін-тах. У сістэме АН выдавецка-паліграфічнае вытворчае аб’яднанне «Беларуская навука», Бібліятэка цэнтральная навуковая імя Я.Коласа, Цэнтральны навук. архіў, музеі стараж.-бел. культуры, гісторыі АН Беларусі. АН выдае «Даклады АН Беларусі», «Весці АН Беларусі» (5 серый), часопісы «Дифференциальные уравнения», «Инженерно-физический журнал», «Журнал прикладной спектроскопии», часопіс «Трение и износ», шматтыражную газ. «Навіны АН Беларусі». Падрыхтоўка навуковых кадраў вядзецца праз дактарантуру і аспірантуру. Асобныя вынікі даследаванняў АН прызнаны сусв. супольніцтвам вучоных як навук. адкрыцці (ультрагукавы капілярны эфект адкрыў акад. Я.Р.Канавалаў, 1972; з’яву рухомасці падвойных сувязяў у спалучаных дыёнавых злучэннях — акад. А.А.Ахрэм разам з вучонымі з Масквы і Новасібірска, 1975; з’яву стабілізацыі-лабілізацыі электронна-ўзбуджаных шмататамных малекул — акад. М.А.Барысевіч і праф. Б.С.Непарэнт, 1978; бакавы зрух праменя пры адбіцці святла — акад. Ф.І.Фёдараў, 1980, і інш.). Многія навук. распрацоўкі знайшлі шырокае прымяненне ў нар. гаспадарцы Беларусі, у т. л. новыя матэрыялы і тэхналогіі, унікальныя прыборы і высокапрадукцыйныя гатункі культ. раслін.
Купревич В.Ф. Академия наук Белорусской ССР: Очерк истории и деятельности. 3 изд. Мн., 1968;
Акадэмія навук Беларускай ССР. Мн., 1979;
Токарев Н.В. Академия наук Белорусской ССР: годы становления и испытаний (1929—45). Мн., 1988;
Академия наук Белорусской ССР: Краткий очерк Мн., 1989;
Інстытут беларускай культуры. Мн., 1993.
В.К.Шчэрбін.
Акадэмія навук Беларусі. Галоўны корпус.Да арт. Акадэмія навук Беларусі. У лабараторыі ядзернай спектраскапіі Інстытута фізікі.Да арт. Акадэмія навук Беларусі. У музеі Інстытута мастацтвазнаўства, этнаграфіі і фальклору.Да арт. Акадэмія навук Беларусі. У лабараторыі экалогіі наземных жывёл Інстытута заалогіі.