АДНО́СІНЫ двух лікаў,

дзель аднаго ліку на другі. Адносіны дзвюх аднародных велічынь наз. лік, які атрымліваецца ў выніку вымярэння першай велічыні, калі другая прынята за адзінку. Калі 2 велічыні вымераны з дапамогай адной і той жа адзінкі, то іх адносіны роўныя адносінам лікаў, якія іх вымяраюць. Адносіны даўжынь 2 адрэзкаў выражаюцца рацыянальным (сувымерныя адрэзкі) або ірацыянальным (несувымерныя адрэзкі) лікам. Паводле Эўкліда, 4 адрэзкі a, b, a′, b′ утвараюць прапорцыю a : b = a′ : b′, калі для адвольных натуральных лікаў m і n выконваецца адна з суадносін ma = nb, ma > nb, ma < nb адначасова з адпаведнымі суадносінамі ma′ = nb′, ma′ > nb′, ma′ < nb′. У выпадку несувымернасці a і b — разбіўка ўсіх рацыянальных лікаў x = m/n на 2 класы па прыкмеце а > xb або а < xb супадае з разбіўкай па прыкмеце a′ > xb′ або a′ < xb′, што адпавядае сутнасці ідэі сучаснай тэорыі дэдэкінда сячэнняў.

т. 1, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЕ́РНІК Васіль Іванавіч

(н. 9.1.1947, в. Слабада-Пырашаўская Уздзенскага р-на Мінскай вобл.),

бел. матэматык. Д-р фіз.-матэм. н. (1986), праф. (1992). Скончыў БДУ (1970). З 1970 у Ін-це матэматыкі АН Беларусі. Навук. працы па тэорыі лікаў. Распрацаваў новы метад ацэнак размернасці Гаўсдорфа мностваў рэчаісных і камплексных лікаў з зададзенай мерай трансцэндэнтнасці.

Тв.:

Диофантовы приближения и размерность Хаусдорфа. Мн., 1988 (разам з Ю.У.Мельнічуком).

т. 3, с. 120

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДЗІРЫХЛЕ́ (Dirichlet) Іаган Петэр Густаў

(13.2.1805, г. Дзюрэн, Германія — 5.5.1859),

нямецкі матэматык. Замежны чл.-кар. Пецярбургскай (1837) і чл. Парыжскай (1854) АН, чл. Берлінскай АН, Лонданскага каралеўскага т-ва (1855). Праф. Берлінскага (1831—55), Гётынгенскага ун-таў (з 1855). Навук. працы па тэорыі лікаў, матэм. аналізе, механіцы, матэм. фізіцы. Даказаў тэарэму пра існаванне бясконца вялікай колькасці простых лікаў у кожнай арыфметычнай прагрэсіі з цэлых лікаў, першы член і рознасць якой — лікі ўзаемна простыя. Сфармуляваў і даследаваў паняцце ўмоўнай збежнасці шэрагу, устанавіў прыкмету збежнасці шэрагу (прыкмета Дз.); даказаў магчымасць раскладання ў шэраг Фур’е функцыі, якая мае канечную колькасць максімумаў і мінімумаў (інтэграл Дз.).

Літ.: Рыбников К.А. История математики. 2 изд. М., 1974.

т. 6, с. 117

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАГАРЫФМІ́ЧНАЯ ФУ́НКЦЫЯ,

функцыя, адваротная паказальнай функцыі; адна з асн. элементарных функцый. Вызначаецца формулай y = lnx Значэнне у Л.ф., адпаведнае значэнню аргумента x, наз. натуральным лагарыфмам ліку x. Графік Л.ф. наз. лагарыфнікай.

У матэм. аналізе разглядаюцца Л.ф. віду y = logax, звязаныя з y = lnx (асноўнай) суадносінамі logax = lnx/lna пры a > 0, a ≠ 1. Іх асн. ўласцівасці вынікаюць з уласцівасцей паказальнай функцыі і лагарыфма Л.ф. ў вобласці сапраўдных лікаў вызначана толькі для дадатных х, у вобласці камплексных лікаў — для любых сапраўдных і камплексных лікаў. Графік Л.ф. logax сіметрычны графіку паказальнай функцыі y = ax адносна восі Ox, праходзіць праз пункт (1, 0) і асімптатычна набліжаецца да восі Oy.

А.А.Гусак.

Графікі некаторых лагарыфмічных функцый.

т. 9, с. 87

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БРЫГС (Briggs) Генры

(2.1561, Уолівуд, графства Йоркшыр, Вялікабрытанія — 26.1.1630),

англійскі матэматык. Скончыў Кембрыджскі ун-т (1588). З 1619 праф. Оксфардскага ун-та. Навук. працы па геаметрыі, трыганаметрыі і навігацыі. Склаў і апублікаваў першыя табліцы дзесятковых лагарыфмаў: 8-значныя для лікаў першай тысячы (1617), 14-значныя для лікаў ад 1 да 20 000 і ад 90 000 да 100 000 (1624). У 1633 выдадзены 14-значныя табліцы лагарыфмаў трыганаметрычных функцый, падрыхтаваныя Брыгсам з Г.Гелібрандам.

т. 3, с. 273

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЛГЕБРАІ́ЧНЫ ЛІК,

корань мнагаскладу P(x) = an xn + ... + a1x + a0 з рацыянальнымі каэфіцыентамі an, з якіх не ўсе роўныя 0; у агульным выпадку можа быць камплексным лікам. Г.Кантар (1872) паказаў, што мноства ўсіх алгебраічных лікаў злічонае і таму існуюць неалг. лікі (гл. Трансцэндэнтны лік), напр., 2, π і інш. Мноства ўсіх алгебраічных лікаў — алгебраічна замкнёнае поле (напр., адвольны корань мнагаскладу з алг. каэфіцыентамі таксама алгебраічны лік).

В.І.Бернік.

т. 1, с. 235

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДРЭ́ЗАК, сегмент (матэм.),

мноства лікаў або пунктаў на прамой, размешчаных паміж двума лікамі або пунктамі A і B, разам з пунктамі A і B. Каардынаты адрэзка задавальняюць умовам a ≤ x ≤ b (a і b — каардынаты канцоў адрэзка).

т. 1, с. 137

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДЗІ́НКА 1) найменшы з натуральных лікаў n = 1. Пры множанні адвольнага ліку на 1 атрымліваецца той жа самы лік.

2) Элемент e мноства M наз. адзінкай, у адносінах да бінарнай алг. аперацыі *, калі для адвольнага элемента a мноства M выконваецца роўнасць a * e = a, або e * a = a (абедзве роўнасці незалежныя, г. зн., што ў агульным выпадку a * в ≠ в * a). Адрозніваюць левыя і правыя адзінкі: a * eп = a і eл * a = a. Калі на мностве M вызначана некалькі бінарных аперацый (напр., множанне і складанне лікаў), то e наз. адзінкай толькі ў адносінах да множання, у адносінах да складання — нулём.

т. 1, с. 108

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАГАРЫ́ФМ ліку N па аснове a

(a>0, a≠1) (ад логас + грэч. arithmos лік),

паказчык ступені m, у якую ўзводзіцца лік a для атрымання ліку N. Абазначаецца logaN. Напр., log10100 = lg 100 = 2; log21/32 = −5. Дазваляе зводзіць множанне (дзяленне) лікаў да складання (адымання) іх Л., а ўзвядзенне ў ступень (здабыванне кораня) — да множання (дзялення) Л. на паказчык ступені (кораня).

Л. і табліцы Л. уведзены незалежна шатл. матэматыкам Дж.Неперам (1614, 1619) і швейц. матэматыкам І.Бюргі (1620). Кожнаму дадатнаму ліку адпавядае пры зададзенай аснове адзіны сапраўдны Л. (Л. адмоўнага ліку — камплексны лік). Найб. пашыраныя дзесятковыя (a = 10) і натуральныя (a = e = =2,71828...), якія абазначаюцца lgN і lnN адпаведна. Цэлую частку Л. наз. характарыстыкай, дробавую — мантысай. Дзесятковыя Л. лікаў, якія адрозніваюцца множнікам 10​n, маюць аднолькавыя мантысы, што закладзена ў аснову пабудавання лагарыфмічных табліц. У камплекснай вобласці разглядаюцца Л камплексных лікаў: Lnz = ln(z) + iArgz, дзе Argz — аргумент z. Пры пераменным х>0 суадносіны y = lnx вызначаюць лагарыфмічную функцыю. Да з’яўлення выліч. машын табліцы Л. былі асн. дапаможным сродкам пры разліках.

Ю.С.Багданаў, А.А.Гусак.

т. 9, с. 86

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРУ́ПА,

адно з асноўных паняццяў сучаснай матэматыкі, выкарыстоўваецца таксама ў фізіцы і інш. навуках пры вывучэнні ўласцівасцей сіметрыі. Узнікненне выклікана неабходнасцю выконваць пэўныя дзеянні (складанне, множанне) не толькі над лікамі, але і над вектарамі, мноствамі, матрыцамі, пераўтварэннямі і інш. матэм. аб’ектамі. Паняцце групы пачало фарміравацца ў канцы 18 — пач. 19 ст. незалежна ў алгебры ў выглядзе канечных груп падстановак пры рашэнні алг. ураўненняў у радыкалах (Ж.Лагранж, Н.Абель, Э.Галуа; апошні прапанаваў і тэрмін «група»), у геаметрыі пры з’яўленні неэўклідавых геаметрый і ў праектыўнай геаметрыі, а таксама ў тэорыі лікаў (Л.Эйлер, К.Гаўс) пры вывучэнні параўнанняў і класаў рэштаў.

Групай наз. непустая сукупнасць элементаў (мноства) G, на якой зададзена алг. аперацыя *, што задавальняе ўмовам: аперацыя асацыятыўная a*(b*c)=(a*b)*c для ўсіх a*b*c з G; для любога элемента а з G існуе нейтральны элемент n, для якога a*n=n*a=a; для любога элемента а з G існуе адваротны элемент x, для якога a*x=x*а=n. Напр., мноства ўсіх цэлых лікаў адносна аперацыі складання; сукупнасць падстановак мноства X, калі пад здабыткам 2 падстановак разумець вынік іх паслядоўнага выканання для любога x з X. Частка элементаў групы G, што сама ўтварае групу адносна групавой аперацыі ў G, наз. падгрупай (напр., мноства ўсіх цотных лікаў — падгрупа групы цэлых лікаў). Група наз. канечнай (бясконцай), калі мноства G мае канечную (бясконцую) колькасць элементаў. Гл. таксама Груп тэорыя.

Р.Т.Вальвачоў.

т. 5, с. 466

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)