АДЗІ́НКА 1) найменшы з натуральных лікаў n = 1. Пры множанні адвольнага ліку на 1 атрымліваецца той жа самы лік.

2) Элемент e мноства M наз. адзінкай, у адносінах да бінарнай алг. аперацыі *, калі для адвольнага элемента a мноства M выконваецца роўнасць a * e = a, або e * a = a (абедзве роўнасці незалежныя, г. зн., што ў агульным выпадку a * в ≠ в * a). Адрозніваюць левыя і правыя адзінкі: a * eп = a і eл * a = a. Калі на мностве M вызначана некалькі бінарных аперацый (напр., множанне і складанне лікаў), то e наз. адзінкай толькі ў адносінах да множання, у адносінах да складання — нулём.

т. 1, с. 108

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРУ́ПА,

адно з асноўных паняццяў сучаснай матэматыкі, выкарыстоўваецца таксама ў фізіцы і інш. навуках пры вывучэнні ўласцівасцей сіметрыі. Узнікненне выклікана неабходнасцю выконваць пэўныя дзеянні (складанне, множанне) не толькі над лікамі, але і над вектарамі, мноствамі, матрыцамі, пераўтварэннямі і інш. матэм. аб’ектамі. Паняцце групы пачало фарміравацца ў канцы 18 — пач. 19 ст. незалежна ў алгебры ў выглядзе канечных груп падстановак пры рашэнні алг. ураўненняў у радыкалах (Ж.Лагранж, Н.Абель, Э.Галуа; апошні прапанаваў і тэрмін «група»), у геаметрыі пры з’яўленні неэўклідавых геаметрый і ў праектыўнай геаметрыі, а таксама ў тэорыі лікаў (Л.Эйлер, К.Гаўс) пры вывучэнні параўнанняў і класаў рэштаў.

Групай наз. непустая сукупнасць элементаў (мноства) G, на якой зададзена алг. аперацыя *, што задавальняе ўмовам: аперацыя асацыятыўная a*(b*c)=(a*b)*c для ўсіх a*b*c з G; для любога элемента а з G існуе нейтральны элемент n, для якога a*n=n*a=a; для любога элемента а з G існуе адваротны элемент x, для якога a*x=x*а=n. Напр., мноства ўсіх цэлых лікаў адносна аперацыі складання; сукупнасць падстановак мноства X, калі пад здабыткам 2 падстановак разумець вынік іх паслядоўнага выканання для любога x з X. Частка элементаў групы G, што сама ўтварае групу адносна групавой аперацыі ў G, наз. падгрупай (напр., мноства ўсіх цотных лікаў — падгрупа групы цэлых лікаў). Група наз. канечнай (бясконцай), калі мноства G мае канечную (бясконцую) колькасць элементаў. Гл. таксама Груп тэорыя.

Р.Т.Вальвачоў.

т. 5, с. 466

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́МІЛЬТАН

(Hamilton) Уільям Роўан (4.8.1805, Дублін — 2.9.1865),

ірландскі матэматык і механік. Чл. Ірландскай АН (1832) і яе прэзідэнт у 1837—45. Чл.-кар. Пецярбургскай АН (1837). Скончыў Дублінскі ун-т (1827), з 1827 праф. і дырэктар астр. абсерваторыі гэтага ун-та. Распрацаваў тэорыю гіперкамплексных лікаў, пабудаваў сістэму кватэрніёнаў, адначасова з Г.Грасманам прапанаваў тэорыю камплексных лікаў, якая стала адной з крыніц развіцця вектарнага злічэння. Распрацаваў тэорыю аптычных з’яў і ўстанавіў аналогію паміж класічнай механікай і геам. оптыкай, сфармуляваў адзін з варыяцыйных прынцыпаў механікі — найменшага дзеяння прынцып (прынцып Гамільтана), які незалежна ад яго выказаў М.В.Астраградскі.

Літ.:

Полак Л.С. Уильям Роуэн Гамильтон // Тр. Ин-та истории естествознания и техники АН СССР. 1956. Т. 15.

т. 5, с. 15

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСАЦЫЯТЫ́ЎНАСЦЬ

(ад лац. associare далучаць),

спалучальнасць, спалучальны закон (матэм.), уласцівасць складання і множання лікаў, якая выражана тоеснасцю (a + b) + c = a + (b + c) і (a b) c = a (bc) адпаведна (спачатку выконваецца аперацыя, узятая ў дужкі). Уласцівасць асацыятыўнасці мае множанне матрыц, падстановак, пераўтварэнняў. Аперацыі дзялення і аднімання не асацыятыўныя.

т. 2, с. 21

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВІНАГРА́ДАЎ Іван Мацвеевіч

(14.9.1891, с. Мілалюб Пскоўскай вобл., Расія — 20.3.1983),

савецкі матэматык.

Акад. АН СССР (1929). Чл. шматлікіх замежных АН. Двойчы Герой Сац. Працы (1945, 1971). Скончыў Пецярбургскі ун-т (1914). З 1918 у Пермскім ун-це, ленінградскіх політэхн. ін-це і ун-це. З 1932 дырэктар Матэм. ін-та АН СССР. Навук. працы па аналіт. тэорыі лікаў. Прапанаваў адзін з самых эфектыўных і агульных метадаў аналіт. тэорыі лікаў — метад трыганаметрычных сум, які дазволіў атрымаць фундаментальныя вынікі па праблемах Варынга, Гільберта—Камке, Гольдбаха, ацэнцы сум Вейля і інш. Ленінская прэмія 1972. Дзярж. прэмія СССР 1941, 1983. Залаты медаль імя М.В.Ламаносава АН СССР (1971).

Тв.:

Метод тригонометрических сумм в теории чисел. 2 изд. М., 1980;

Основы теории чисел. 9 изд. М., 1981.

Літ.:

Н.М.Виноградов. М., 1978.

т. 4, с. 181

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРЫЯБХА́ТА

(476, Кусумапур, паблізу сучаснага горада Пата, Індыя — каля 550),

індыйскі астраном і матэматык. У творы «Арыябхатыям» выклаў некаторыя матэматычныя звесткі, неабходныя для астранамічных вылічэнняў: здабыванне квадратнага і кубічнага каранёў, найпрасцейшыя задачы на складанне і рашэнне ўраўненняў, правілы падсумавання радоў, табліцу сінусаў, прыбліжанае значэнне ліку π = 3,1416 і інш. Увёў запіс лікаў пры дапамозе літар санскрыту.

Літ.:

Володарский А.И. Ариабхата. М., 1977.

т. 2, с. 9

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРЫФМЕТЫ́ЧНАЯ ПРАГРЭ́СІЯ,

паслядоўнасць лікаў (a1, a2, ..., an, ...), кожны наступны з якіх атрымліваецца з папярэдняга дадаваннем пастаяннага ліку d (рознасць арыфметычнай прагрэсіі). Напрыклад, 2, 5, 8, 11, ..., d = 3. Калі d>0 (d<0), то арыфметычная прагрэсія нарастальная (спадальная). Любы член арыфметычнай прагрэсіі вылічваецца па формуле an = a1 + d(n−1) ; сума Sn першых n членаў — Sn = n ( a1 + an ) / 2 .

т. 2, с. 9

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

А́ЛГЕБРЫ АСНО́ЎНАЯ ТЭАРЭ́МА,

класічная тэарэма існавання, якая сцвярджае, што кожны мнагасклад з камплекснымі каэфіцыентамі мае камплексны корань. Упершыню выказаў ням. матэматык П.Ротэ (1608), першым дакладна даказаў К.Гаўс (1799). Усе доказы абапіраюцца на тапалагічныя ўласцівасці мностваў камплексных і рэчаісных лікаў. З алгебры асноўнай тэарэмы вынікае: колькасць каранёў мнагаскладу супадае са ступенню мнагаскладу; кожны паліном з рэчаіснымі каэфіцыентамі раскладаецца ў здабытак лінейных і квадратычных множнікаў з рэчаіснымі каэфіцыентамі.

В.А.Ліпніцкі.

т. 1, с. 235

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЮІ́,

Аюі (Haüy) Рэнэ Жуст (28.2.1743, г. Сен-Жу-ан-Шасэ, Францыя — 1.6 або 3.6.1822), французскі крышталёграф і мінералог. Чл. Парыжскай АН (1783). Ганаровы чл. Пецярбургскай АН (1806). У 1794—1802 праф. Горнай школы (Парыж). Зрабіў вял. ўклад у развіццё крышталяграфіі; адкрыў закон цэлых лікаў (рацыянальнасці параметраў), названы яго імем, распрацаваў тэорыю памяншэння колькасці малекул у слаях, якія паслядоўна фарміруюць крышталь. Яго імем названы мінерал гаюін.

т. 5, с. 97

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРЫФМЕ́ТЫКА

(ад грэчаскага arithmos лік),

навука, галоўны аб’ект якой цэлыя, рацыянальныя лікі і дзеянні над імі. Узнікла ў старажытныя часы з практычных патрэб чалавека лічыць і вымяраць. Для падліку вялікай колькасці аб’ектаў створаны сістэмы лічэння. Найбольш зручная дзесятковая сістэма лічэння; існуюць таксама сістэмы лічэння з асновамі 5, 12, 20, 40, 60 і нават 11 (Новая Зеландыя). З пашырэннем вылічальнай тэхнікі выкарыстоўваецца двайковая сістэма лічэння.

Да пачатку нашай эры былі атрыманы дастаткова глыбокія вынікі: даказана бесканечнасць мноства простых лікаў, несувымернасць стараны квадрата і яго дыяганалі (па сутнасці доказ ірацыянальнасці ліку √2), створаны алгарытм выяўлення агульнай меры двух адрэзкаў і найбольшага агульнага дзельніка, Піфагорам знойдзены агульны выгляд цэлалікавых катэтаў і гіпатэнузы прамавугольных трохвугольнікаў, значны ўплыў на развіццё арыфметыкі зрабіў Архімед. Фундаментальнае значэнне арыфметыкі як навукі стала зразумелым у канцы 17 стагоддзя ў сувязі з далучэннем да яе паняцця ірацыянальнага ліку. Развіццё апарату сувязяў паміж гэтымі лікамі і іх рацыянальнымі набліжэннямі (у прыватнасці, дзесятковымі), а таксама вынаходства і дастасаванне лагарыфмаў (шатландскі матэматык Дж.Непер) значна пашырылі тэматыку даследаванняў. Шматлікія пытанні знайшлі вырашэнне ў лікаў тэорыі. Спроба Г.Грасмана аксіяматычнай пабудовы арыфметыкі (сярэдзіна 19 стагоддзя) завершана італьянскім матэматыкам Дж.Пеана ў выглядзе 5 аксіём: 1) адзінка ёсць натуральны лік; 2) наступны за натуральным лікам ёсць таксама натуральны лік; 3) у адзінкі няма папярэдняга натуральнага ліку; 4) калі натуральны лік a стаіць за натуральным лікам b і за натуральным лікам c, то b і c тоесныя; 5) калі якое-небудзь сцвярджэнне даказана для адзінкі і калі з дапушчэння, што яно праўдзівае для натуральнага ліку n, вынікае, што яно выконваецца і для наступнага за n натуральнага ліку, то гэта сцвярджэнне справядліва для адвольнага натуральнага ліку (аксіёма поўнай матэматычнай індукцыі). Па-за прапанаванай сістэмай аксіём застаюцца многія пытанні, у якіх вывучаецца ўся бесканечная сукупнасць натуральных лікаў, што патрабуе даследавання несупярэчлівасці адпаведнай сістэмы аксіём і больш дэталёвага аналізу сэнсу сцвярджэнняў, якія вынікаюць з яе. Як навука арыфметыка часам атаясамліваецца з тэорыяй лікаў.

Літ.:

История математики с древнейших времен до начала XIX столетия. Т. 1—3. М., 1970—72. Депман И.Я. История арифметики. 2 изд. М., 1965.

В.І.Бернік.

т. 2, с. 9

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)