бесканечная паслядоўнасць усіх цэлых дадатных лікаў 1, 2, 3, ..., размешчаных па парадку іх узрастання. Члены Н.р. наз. натуральнымі лікамі, іх асн. ўласцівасці вывучаюцца лікаў тэорыяй. Гл. таксама Лік.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МАГІ́ЧНЫ КВАДРА́Т,
квадратная (n × n) табліца цэлых лікаў ад 1 да n2, у якой сума лікаў уздоўж любога радка, слупка і вял. дыяганалі табліцы ёсць велічыня пастаянная і роўная n(n2 + 1)/2. Лік n наз. парадкам М.к. Даказана, што М.к. можна пабудаваць для любога n>3. Існуюць М.к., якія задавальняюць дадатковыя умовы, напр., М.к. з n=8 можна разбіць на 4 меншыя па 16 лікаў, кожны з якіх таксама М.к. У абагульненым сэнсе пад М.к. разумеюць квадратныя табліцы, запоўненыя не абавязкова паслядоўнымі і першымі натуральнымі лікамі.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АДНО́СІНЫдвух лікаў,
дзель аднаго ліку на другі. Адносіны дзвюх аднародных велічынь наз. лік, які атрымліваецца ў выніку вымярэння першай велічыні, калі другая прынята за адзінку. Калі 2 велічыні вымераны з дапамогай адной і той жа адзінкі, то іх адносіны роўныя адносінам лікаў, якія іх вымяраюць. Адносіны даўжынь 2 адрэзкаў выражаюцца рацыянальным (сувымерныя адрэзкі) або ірацыянальным (несувымерныя адрэзкі) лікам. Паводле Эўкліда, 4 адрэзкі a, b, a′, b′ утвараюць прапорцыю a : b = a′ : b′, калі для адвольных натуральных лікаў m і n выконваецца адна з суадносін ma = nb, ma > nb, ma < nb адначасова з адпаведнымі суадносінамі ma′ = nb′, ma′ > nb′, ma′ < nb′. У выпадку несувымернасці a і b — разбіўка ўсіх рацыянальных лікаў x = m/n на 2 класы па прыкмеце а > xb або а < xb супадае з разбіўкай па прыкмеце a′ > xb′ або a′ < xb′, што адпавядае сутнасці ідэі сучаснай тэорыі дэдэкінда сячэнняў.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БЕ́РНІК (Васіль Іванавіч) (н. 9.1.1947, в. Слабада-Пырашаўская Уздзенскага р-на Мінскай вобл.),
бел. матэматык. Д-рфіз.-матэм. н. (1986), праф. (1992). Скончыў БДУ (1970). З 1970 у Ін-це матэматыкі АН Беларусі. Навук. працы па тэорыі лікаў. Распрацаваў новы метад ацэнак размернасці Гаўсдорфа мностваў рэчаісных і камплексных лікаў з зададзенай мерай трансцэндэнтнасці.
Тв.:
Диофантовы приближения и размерность Хаусдорфа. Мн., 1988 (разам з Ю.У.Мельнічуком).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЛАГАРЫФМІ́ЧНАЯ ФУ́НКЦЫЯ,
функцыя, адваротная паказальнай функцыі; адна з асн.элементарных функцый. Вызначаецца формулай y = lnx Значэнне y Л.ф., адпаведнае значэнню аргумента x, наз. натуральным лагарыфмам ліку x. Графік Л.ф. наз. лагарыфнікай.
У матэм. аналізе разглядаюцца Л.ф. віду y = logax, звязаныя з y = lnx (асноўнай) суадносінамі logax = lnx/lna пры a > 0, a ≠ 1. Іх асн. ўласцівасці вынікаюць з уласцівасцей паказальнай функцыі і лагарыфма Л.ф. ў вобласці сапраўдных лікаў вызначана толькі для дадатных х, у вобласці камплексных лікаў — для любых сапраўдных і камплексных лікаў. Графік Л.ф. logax сіметрычны графіку паказальнай функцыі y = ax адносна восі Ox, праходзіць праз пункт (1, 0) і асімптатычна набліжаецца да восі Oy.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ДЗІРЫХЛЕ́ ((Dirichlet) Іаган Петэр Густаў) (13.2.1805, г. Дзюрэн, Германія — 5.5.1859),
нямецкі матэматык. Замежны чл.-кар. Пецярбургскай (1837) і чл. Парыжскай (1854) АН, чл. Берлінскай АН, Лонданскага каралеўскага т-ва (1855). Праф. Берлінскага (1831—55), Гётынгенскага ун-таў (з 1855). Навук. працы па тэорыі лікаў, матэм. аналізе, механіцы, матэм. фізіцы. Даказаў тэарэму пра існаванне бясконца вялікай колькасці простых лікаў у кожнай арыфметычнай прагрэсіі з цэлых лікаў, першы член і рознасць якой — лікі ўзаемна простыя. Сфармуляваў і даследаваў паняцце ўмоўнай збежнасці шэрагу, устанавіў прыкмету збежнасці шэрагу (прыкмета Дз.); даказаў магчымасць раскладання ў шэраг Фур’е функцыі, якая мае канечную колькасць максімумаў і мінімумаў (інтэграл Дз.).
Літ.: Рыбников К.А. История математики. 2 изд. М., 1974.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БРЫГС ((Briggs) Генры) (2.1561, Уолівуд, графства Йоркшыр, Вялікабрытанія — 26.1.1630),
англійскі матэматык. Скончыў Кембрыджскі ун-т (1588). З 1619 праф. Оксфардскага ун-та. Навук. працы па геаметрыі, трыганаметрыі і навігацыі. Склаў і апублікаваў першыя табліцы дзесятковых лагарыфмаў: 8-значныя для лікаў першай тысячы (1617), 14-значныя для лікаў ад 1 да 20 000 і ад 90 000 да 100 000 (1624). У 1633 выдадзены 14-значныя табліцы лагарыфмаў трыганаметрычных функцый, падрыхтаваныя Брыгсам з Г.Гелібрандам.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АЛГЕБРАІ́ЧНЫ ЛІК,
корань мнагаскладу
з рацыянальнымі каэфіцыентамі an, з якіх не ўсе роўныя 0; у агульным выпадку можа быць камплексным лікам. Г.Кантар (1872) паказаў, што мноства ўсіх алгебраічных лікаў злічонае і таму існуюць неалг. лікі (гл.Трансцэндэнтны лік), напр., , π і інш. Мноства ўсіх алгебраічных лікаў — алгебраічна замкнёнае поле (напр., адвольны корань мнагаскладу з алг. каэфіцыентамі таксама алгебраічны лік).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
НЕПЕРАРЫ́ЎНЫ ДРОБ, ланцуговы дроб,
адзін з асн. спосабаў прадстаўлення лікаў і функцый. Выкарыстоўваецца ў тэорыі лікаў, матэм. аналізе, механіцы, тэорыі імавернасцей.
Н.д., які адлюстроўвае лік a, можна атрымаць, калі запісаць гэты лік у выглядзе a = a0 + 1/a1, дзе a0 — цэлы лік і 0 < 1/a1< 1, потым у такім жа выглядзе запісаць a1і г.д. Гэты працэс прыводзіць да канечнага дробу, калі a — рацыянальны лік, і да бясконцага ў выпадку ірацыянальнага ліку.