БЕЛАРУ́СКІ ТРЭ́ЦІ ДЗЯРЖА́ЎНЫ ТЭА́ТР (БДТ-3). Існаваў у 1920—37. У розны час меў назвы: Трупа бел. артыстаў пад загадам У.Галубка

(Трупа Галубка),

Другая бел. дзярж. трупа (з 1924), Бел. дзярж. вандроўны тэатр (з 1926), з 1932 БДТ-3. Арганізатар і маст. кіраўнік Галубок. Адкрыўся 10.8.1920 у Мінску спектаклем «Суд» Галубка. Выступаў у Мінску і па ўсёй Беларусі. Нёс у масы бел. нац. культуру, праводзіў вял. культ.-асв. работу. Пастаноўшчыкам усіх спектакляў быў Галубок, ён жа ствараў маст. і муз. афармленне. Калектыў наследаваў і прадаўжаў традыцыі бел. нар. т-ра, Першай беларускай трупы Ігната Буйніцкага і Першага таварыства беларускай драмы і камедыі, укр. труп. Спектаклі былі насычаны музыкай, песнямі, танцамі, нац. каларытам. Ставіліся п’есы Галубка, Ф.Аляхновіча, Я.Купалы, Я.Коласа, М.Чарота, Л.Родзевіча, В.Дуніна-Марцінкевіча, К.Каганца і інш. Першымі акцёрамі былі сам Галубок і члены яго сям’і, бел. пісьменнікі (І.Барашка, А.Дудар, В.Сташэўскі, М.Чарот). У сярэдзіне 1920-х г. трупа папоўнілася маладымі акцёрамі (К.Быліч, У.Дзядзюшка, С.Бірыла, А.Згіроўскі і інш.). Асобныя спектаклі ставілі Е.Міровіч, У.Крыловіч, Ф.Ждановіч, М.Міцкевіч. У 1928 Галубку першаму ў рэспубліцы прысвоена званне нар. арт. БССР. З канца 1920-х г. з наступам ідэалогіі на мастацтва тэатр трапіў пад вострую афіц. парт. крытыку, яго кіраўніцтва абвінавацілі ў нацыяналіст. ухіле, у нізкім маст. узроўні пастановак. На пач. 1930-х г. адбылася рэарганізацыя тэатра. У 1931 яго маст. кіраўніком прызначаны К.Саннікаў (Галубок застаўся дырэктарам і акцёрам), у 1932 т-р атрымаў сталую базу ў Гомелі. У 1934 для павышэння кваліфікацыі калектыў быў накіраваны на 3-месячныя курсы ў Маскву. У рэпертуары быў узяты курс на сучаснасць. Ставіліся пераважна тагачасныя сав. п’есы, якія ішлі ў інш. т-рах краіны, а таксама асобныя класічныя творы (А.Астроўскага, А.Пушкіна, Ф.Шылера). У выніку такой перабудовы павысіліся агульны прафес. ўзровень калектыву, пастановачная культура спектакляў, але т-р страціў нац. самабытнасць і непаўторнасць. У 1937 Галубок і вядучы акцёр Згіроўскі былі рэпрэсіраваны, а т-р расфарміраваны.

А.В.Сабалеўскі.

т. 2, с. 457

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДНО́СНАСЦІ ТЭО́РЫЯ,

фізічная тэорыя прасторы і часу ў іх сувязі з матэрыяй і законамі яе руху. Падзяляецца на спецыяльную (СТА) і агульную (АТА). СТА створана ў 1904—08 у выніку пераадольвання цяжкасцяў, якія ўзніклі ў класічнай фізіцы пры тлумачэнні аптычных (электрадынамічных) з’яў у рухомых асяроддзях (гл. Майкельсана дослед). Заснавальнікі СТА — Г.А.Лорэнц, А.Пуанкарэ, А.Эйнштэйн, Г.Мінкоўскі.

У працы Эйнштэйна «Да электрадынамікі рухомых цел» (1905) сфармуляваны 2 асн. пастулаты СТА; эквівалентнасць усіх інерцыйных сістэм адліку (ІСА), пры апісанні не толькі мех., а таксама аптычных, эл.-магн. і інш. працэсаў (спец. адноснасці прынцып); пастаянства скорасці святла ў вакууме ва ўсіх ІСА; незалежнасць яе ад руху крыніц і прыёмнікаў святла. Пераход ад адной ІСА да ўсякай іншай ІСА адбываецца з дапамогай Лорэнца пераўтварэнняў, якія вызначаюць характэрныя прадказанні СТА; скарачэнне падоўжных памераў цела, запавольванне часу і нелінейны закон складання скарасцей, згодна з якім у прыродзе не можа адбывацца рух (перадача сігналаў) са скорасцю, большай за скорасць святла ў вакууме. СТА — фіз. тэорыя працэсаў, для якіх уласцівы вял., блізкія да скорасці святла c у вакууме скорасці руху. У тым выпадку, калі скорасць v намнога меншая за скорасць свята (v << c), усе асн. палажэнні і формулы СТА пераходзяць у адпаведныя суадносіны класічнай механікі. Раздзелы фізікі, у якіх неабходна ўлічваць адноснасць адначасовасці (з дакладнасцю да v​2/c​2 і вышэй), наз. рэлятывісцкай фізікай. Першай створана рэлятывісцкая механіка, у якой устаноўлены залежнасці поўнай энергіі E і імпульсе p цела масы m ад скорасці руху v: E = m c2 1 v2 / c2 , p = m v 1 v2 / c2 , адкуль вынікае ўзаемасувязь энергіі спакою цела з яго масай: E0 = mc​2. На падставе аб’яднання СТА і квантавай механікі пабудаваны рэлятывісцкая квантавая механіка і рэлятывісцкая квантавая тэорыя поля, якія з’явіліся тэарэт. асновай фізікі элементарных часціц і фундаментальных узаемадзеянняў. Усе асн. палажэнні і прадказанні СТА і пабудаваных на яе аснове фіз. тэорый знайшлі пацвярджэнне ў эксперыментах, выкарыстоўваюцца пры вырашэнні практычных задач ядз. энергетыкі, праектаванні і эксплуатацыі паскаральнікаў зараджаных часціц і г.д. Агульная тэорыя адноснасці (АТА), створаная Эйнштэйнам (1915—16) як рэлятывісцкая (геаметрычная) тэорыя гравітацыйных узаемадзеянняў, вызначыла новы ўзровень навук. поглядаў на прастору і час. Яна пабудаваная на падставе СТА як рэлятывісцкае абагульненне тэорыі сусветнага прыцягнення Ньютана на моцныя гравітацыйныя палі і скорасці руху, блізкія да скорасці святла. АТА апісвае прыцягненне як уздзеянне гравітацыйнай масы рэчыва і поля згодна з эквівалентнасці прынцыпам на ўласцівасці 4-мернай прасторы-часу. Геаметрыя гэтай прасторы перастае быць эўклідавай (плоскай), а становіцца рыманавай (скрыўленай). Гэта азначае, што кожнаму пункту прасторы-часу адпавядае свая метрыка, сваё скрыўленне. Пераўтварэнні Лорэнца ў АТА таксама залежаць ад каардынат прасторы і часу, становяцца лакальнымі, таму можна гаварыць толькі аб лакальным выкананні законаў СТА у АТА. Ролю гравітацыйнага патэнцыялу адыгрывае метрычны тэнзар, які вызначаецца як рашэнне ўведзеных у АТА нелінейных ураўненняў гравітацыйнага поля (ураўненняў Гільберта—Эйнштэйна). У АТА прымаецца, што гравітацыйная маса скрыўляе трохмерную прастору і змяняе працягласць часу тым больш, чым большая гэта маса (большае прыцягненне). У АТА рух цел па інерцыі (пры адсутнасці вонкавых сіл негравітацыйнага паходжання) адбываецца не па прамых лініях з пастаяннай скорасцю, а па скрыўленых лініях з пераменнай скорасцю. Гэта значыць, што ў малой частцы прасторы-часу, дзе гравітацыйнае поле можна лічыць аднародным, створаны ім эфект эквівалентны эфекту, абумоўленаму паскораным (неінерцыяльным) рухам адпаведнай сістэмы адліку. Таму АТА, у якой паняцце ІСА па сутнасці не мае сэнсу, наз. тэорыяй неінерцыйнага руху. Асн. гравітацыйныя эфекты, прадказаныя ў АТА, пацверджаны эксперыментальна. АТА адыграла вял. ролю ў фарміраванні сучаснай касмалогіі.

На Беларусі навук. даследаванні па СТА і АТА пачаліся ў 1928—29 (Ц.Л.Бурстын, Я.П.Громер) і атрымалі інтэнсіўнае развіццё ў АН, БДУ і інш.

Літ.:

Эйнштэйн А. Сущность теории относительноси. М., 1955;

Фок В.А. Теория пространства, времени и тяготения. М., 1961;

Ландау Л.Д., Лифшиц Е.М. Теория поля. М., 1967;

Синг Дж.Л. Общая теория относительности: Пер. с англ. М., 1963;

Фёдоров Ф.И. Группа Лоренца. М., 1979;

Левашев А.Е. Движение и двойственность в релятивистской электродинамике. Мн., 1979;

Иваницкая О.С. Лоренцев базис и гравитационные эффекты в эйнштейновской теории тяготения. Мн., 1979.

А.А.Богуш.

т. 1, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДСО́РБЦЫЯ

(ад лац. ad... на, да + sorbere паглынаць),

паглынанне рэчыва з газавага або вадкага асяроддзя (адсарбату) паверхняй, мікрасітавінамі цвёрдага цела (адсарбенту) ці вадкасці. Адсорбцыя — прыватны выпадак сорбцыі, якая ўключае абсорбцыю. У аснове адсорбцыі ляжаць асаблівыя ўласцівасці рэчыва ў паверхневым слоі, колькасна яна характарызуецца паверхневым нацяжэннем. Падзяляецца на фізічную абсорбцыю і хемасорбцыю, без рэзкага размежавання паміж імі; часта спалучаецца ў адзіным працэсе.

Фізічная адсорбцыя — вынік міжмалекулярных узаемадзеянняў (дысперсных сіл і сіл электрастатычнага характару); менш трывалая, абарачальная (адначасова адбываецца дэсорбцыя) працякае адвольна з памяншэннем паверхневай свабоднай энергіі і выдзяленнем цяпла. Скорасць фіз. адсорбцыі залежыць ад хім. прыроды і геам. структуры адсарбенту, канцэнтрацыі і прыроды рэчываў, што паглынаюцца, т-ры, дыфузіі і міграцыі малекул адсарбату; калі яна роўная скорасці дэсорбцыі, настае адсарбцыйная раўнавага. Пры хемасорбцыі малекулы адсарбату і адсарбенту ўтвараюць хім. злучэнні.

Велічыню адсорбцыі адносяць да адзінкі паверхні ці масы адсарбенту; яна павялічваецца пры павышэнні канцэнтрацыі адсарбату і памяншаецца пры павышэнні т-ры. Пры цвёрдых адсарбентах велічыню адсорбцыі вызначаюць па колькасці паглынутага рэчыва ці па змене канцэнтрацыі адсарбату; пры вадкіх — па змене паверхневага нацяжэння. Адсорбцыя адыгрывае важную ролю ў цеплаабмене, стабілізацыі калоідных сістэм (гл. Дысперсныя сістэмы, Каагуляцыя, Міцэлы), у гетэрагенных рэакцыях (гл. Тапамічныя рэакцыі, Каталіз). Выкарыстоўваецца ў храматаграфіі, прамысл. тэхналогіях, мае месца ў многіх біял. і глебавых працэсах. Адсорбцыя ў біялагічных сістэмах — першая стадыя паглынання рэчываў з навакольнага асяроддзя субмікраскапічнымі калоіднымі структурамі, арганеламі і клеткамі. У рознай ступені ўласціва працэсам функцыянавання біял. мембран, узаемадзеяння ферментаў з субстратам, антыцелаў з антыгенамі (на пач. стадыі), нейтралізацыі таксічных агентаў, усмоктвання пажыўных рэчываў і інш., дзе істотнае значэнне маюць паверхневыя ўласцівасці асобных кампанентаў біял. сістэм. У мед. практыцы індыферэнтнымі, нерастваральнымі адсарбентамі карыстаюцца для выдалення з арганізма соляў цяжкіх металаў, алкалоідаў, харч. інтаксікантаў, пры метэарызме, вонкава — у выглядзе прысыпак, мазяў і пастаў — пры запаленні скуры і слізістых абалонак для падсушвання. На з’явах адсорбцыі грунтуецца шэраг метадаў біяхім. даследаванняў.

Літ.:

Адамсон А. Физическая химия поверхностей: Пер. с англ. М., 1979;

Кельцев Н.В. Основы адсорбционной техники. 2 изд. М., 1984.

т. 1, с. 138

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАІЗАЛЯ́ЦЫЯ

(ад гідра... + ізаляцыя),

ахова канструкцый, будынкаў і збудаванняў ад пранікнення і шкоднага ўздзеяння вады і хімічна агрэсіўных вадкасцей. Для гідраізаляцыі выкарыстоўваюць гідраізаляцыйныя матэрыялы, ахоўныя пакрыцці, спец. канструктыўныя элементы або воданепранікальныя слаі паверхні збудаванняў, ушчыльненні дэфармацыйных швоў, стыкаў у зборных збудаваннях і інш. Адрозніваюць гідраізаляцыю проціфільтрацыйную (герметызавальную) і процікаразійную; у залежнасці ад віду асн. матэрыялу — бітумную, палімерную, металічную, армацэментную і інш.; ад віду ахоўнага пакрыцця — цвёрдую, абмазачную, пластычную, абклеечную, камбінаваную.

Проціфільтрацыйнай гідраізаляцыяй папярэджваюць пранікненне вады ў падземныя і падводныя збудаванні (падвалы, рэзервуары, шахты, тунэлі і інш.), прасочванне праз падпорныя гідратэхн. збудаванні (бетонныя плаціны), выцяканне яе (з рэзервуараў, адстойнікаў) і г.д. Процікаразійнай гідраізаляцыяй ахоўваюць канструкцыі ад грунтавых і сцёкавых вод, атм. вільгаці, а таксама ад блукальных токаў, што выклікаюць карозію (трубаправодаў, апор ЛЭП, падземных канструкцый і інш.). Цвёрдая гідраізаляцыя робіцца: пакрыццём ізалюемай паверхні слоем шчыльнага бетону або тынку, прыгатаваных з рознымі дабаўкамі-ўшчыльняльнікамі; жалязненнем (уціранне сухога цэменту ва ўвільготненыя або ў толькі што ўкладзеныя і змочаныя вадой бетонныя паверхні); таркрэтаваннем (нанясенне слоя цэментнага раствору або дробназярністага бетону на паверхню збудавання цэмент-пушкай, а на ўнутр. паверхню труб — цэнтрыфугаваннем). Абмазачная гідраізаляцыя ў выглядзе тонкага пакрыцця наносіцца на паверхню ў халодным або гарачым стане фарбавальнымі апаратамі (электрафарбапульты, распыляльнікі і інш.) ці пэндзлем. Бывае адна- і мнагаслойная, нармальнага і ўзмоцненага тыпу. Абклеечную гідраізаляцыю ствараюць у выглядзе воданепранікальнай масы з бітуму або асфальтавай масцікі, арміраванай слаямі шклотканіны, руберойду, мешкавіны, тканіны з узмацняльнай абгорткай і без яе, ліпкіх палімерных стужак і інш. Камбінаваная гідраізаляцыя — камбінацыя пералічаных тыпаў. Ужываецца таксама гідраізаляцыя, якая манціруецца (да канструкцый прымацоўваюць зваркай і склейваннем метал. або пластмасавыя лісты, сегменты і да т.п.), абліцовачная (воданепранікальнымі пліткамі, керамічнымі блокамі і інш. вырабамі, якія наклейваюцца з дапамогай масцік), насычальная (канструкцыі з порыстых матэрыялаў насычаюць вяжучымі рэчывамі), засыпная (у воданепранікальныя слаі і пустоты канструкцый засыпаюць гідрафобныя сыпкія матэрыялы). Тып гідраізаляцыі і неабходныя для яе гідраізаляцыйныя матэрыялы выбіраюць з улікам уласцівасцей гэтых матэрыялаў (старэнне, цеплаўстойлівасць, дэфармацыйная здольнасць і інш.), а таксама спецыфікі работы збудавання. Для забеспячэння нармальнай эксплуатацыі гідраізаляцыі ажыццяўляюць кантроль якасці пакрыцця знешнім аглядам, таўшчынямерамі, дэфектаскопамі, адгезіметрамі і інш.

А.Я.Вакар.

т. 5, с. 225

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛА́КТЫКА

(ад познагрэч. galaktikos малочны, млечны),

гіганцкая зорная сістэма, да якой належаць Сонца і ўся Сонечная сістэма разам з Зямлёй. У яе ўваходзяць не менш за 100 млрд. зорак (іх агульная маса каля 10​11 мас Сонца), міжзорнае рэчыва (газ і пыл, маса якіх каля 0,05 масы ўсіх зорак), касм. часціцы, эл.-магн. і гравітацыйнае поле.

Структура Галактыкі неаднародная. Адрозніваюць 3 асн. падсістэмы: сферычную (гала) — шаравыя скопішчы, чырвоныя гіганты, субкарлікі, пераменныя зоркі тыпу RR-Ліры, якія рухаюцца вакол цэнтра мас Галактыкі па выцягнутых арбітах у разнастайных напрамках і не ўдзельнічаюць у вярчэнні галактычнага дыска; прамежкавую (дыск) — большасць зорак галоўнай паслядоўнасці, у т. л. Сонца, зоркі-гіганты, белыя карлікі, планетарныя туманнасці; скорасць іх вярчэння мяняецца з адлегласцю ад цэнтра; узрост — некалькі млрд. гадоў; плоскую (тонкі дыск ці спіральныя рукавы) — маладыя зоркі, міжзорны газ і пыл, доўгаперыядычныя цэфеіды, пульсары, многія галактычныя крыніцы гама-, рэнтгенаўскага і інфрачырвонага выпрамянення; узрост гэтых зорак не большы за 100 млн. гадоў, яны не паспелі значна аддаліцца ад месцаў свайго нараджэння, таму спіральныя галіны Галактыкі лічаць месцам утварэння зорак. Цэнтральная вобласць Галактыкі (ядро) знаходзіцца ў напрамку сузор’я Стралец і заслонена ад зямнога назіральніка міжзорнымі воблакамі касм. пылу і газу. Памеры ядра Галактыкі больш за 1000 пк. Яно з’яўляецца крыніцай магутнага радыевыпрамянення, што сведчыць пра актыўныя працэсы, якія адбываюцца ў ім. Самая знешняя частка сферычнай падсістэмы — карона Галактыкі радыусам каля 70 кпк і масай, у 10 разоў большай за масу ўсёй астатняй Галактыкі. Сонца, знаходзіцца на адлегласці 8,5 кпк ад цэнтра, амаль дакладна ў плоскасці Галактыкі, і аддалена ад яе на Пн прыблізна на 25 кпк Скорасць вярчэння Сонца вакол цэнтра Галактыкі 230 км/с. Для зямнога назіральніка зоркі канцэнтруюцца ў напрамку плоскасці Галактыкі і зліваюцца ў бачную карціну Млечнага Шляху. Знаходжанне Сонца паблізу плоскасці Галактыкі ўскладняе даследаванне нашай зорнай сістэмы.

Літ.:

Марочник Л.С., Сучков А.А. Галактика. М., 1984;

Воронцов-Вельяминов Б.А. Очерки о Вселенной. 8 изд. М., 1980;

Климишин И.А. Открытие Вселенной. М., 1987.

Н.А.Ушакова.

т. 4, с. 448

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВО́БЛАКІ,

сістэмы завіслых у атмасферы прадуктаў кандэнсацыі вадзяной пары — кропелек вады, крышталікаў лёду або іх сумесей. Сукупнасць воблакаў называецца воблачнасцю. Утвараюцца воблакі пры кандэнсацыі вадзяной пары ў стане насычэння на ядрах кандэнсацыі. Дыяметр кропель — каля некалькіх мікронаў, маса вады ў 1 м³ паветра воблакаў — ад долі грама да некалькіх грамаў. Каля зямной паверхні яны ўтвараюць туман. Узбуйненне прадуктаў кандэнсацыі выклікае ападкі атмасферныя (дождж, снег, град).

Узнікненне воблакаў — вынік адыябатычнага ахалоджвання паветра пры яго пад’ёме, радзей — вынік ахалоджвання ад подсцільнай зямной паверхні і турбулентнага перамешвання паветра. Пад’ём паветра, неабходны для ўтварэння воблакаў, адбываецца пры канвекцыі ў атмасферы (канвекцыйныя воблакі), пры ўзыходзячым слізгальным пад’ёме паветра на франтах атмасферных (франтальныя воблакі), пры хвалевых рухах у атмасферы і інш. Большая ч. воблакаў засяроджана ў трапасферы, але зрэдку назіраюцца ў стратасферы (пераважна перламутравыя воблакі) і ў мезасферы (серабрыстыя воблакі). Па міжнар. класіфікацыі воблакі ў залежнасці ад іх ніжняй мяжы адносяцца да аднаго з трох ярусаў — верхняга, сярэдняга або ніжняга. Паводле знешняй будовы і размяшчэння на ярусах воблакі маюць 10 асн. формаў: у верхнім ярусе перыстыя воблакі, перыста-слаістыя воблакі і перыста-кучавыя воблакі (на выш. больш за 6 км), у сярэднім — высокакучавыя воблакі і высокаслаістыя воблакі (на выш. 2—6 км), у ніжнім — слаіста-кучавыя воблакі, слаістыя воблакі і слаіста-дажджавыя воблакі (выш. іх ніжняй мяжы менш за 2 км). Вылучаюць таксама воблакі вертыкальнага развіцця — кучавыя воблакі і кучава-дажджавыя воблакі з вертыкальнымі памерамі аднаго парадку з гарызантальнымі, іх асновы звычайна знаходзяцца ў ніжнім ярусе, а верхнія ч. могуць дасягаць сярэдняга ці верхняга яруса. Воблакі ўкрываюць каля паловы нябеснай сферы на Зямлі і змяшчаюць каля 10​9 т вады. На працягу года розныя тыпы воблакаў маюць розную паўтаральнасць. Воблакі ўплываюць на фарміраванне надвор’я і ападкаў, на цеплавы рэжым паветра, сушы і мора, з’яўляюцца звяном кругавароту вады на Зямлі. Яны могуць перамяшчацца на тысячы кіламетраў, пераносіць і пераразмяркоўваць вялізныя масы вады. На Беларусі зімой пераважае нізкая воблачнасць слаістых формаў, у цёплае паўгоддзе — воблачнасць вертыкальнага развіцця.

І.Я.Афнагель.

т. 4, с. 245

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗЛЕДЗЯНЕ́ННЕ,

1) сукупнасць працягла існуючых прыродных ільдоў на зямной паверхні і ў прыпаверхневым слоі. Асноўныя тыпы З.: наземнае (ледавікі горныя і покрыўныя), марское (скопішча льдоў на паверхні акіянаў і мораў у выглядзе аднагадовых і шматгадовых мас) і падземнае (вечная мерзлата).

Агульная пл. ледавікоў Зямлі каля 16,1 млн. км2 (11% пл. сушы), агульны аб’ём — каля 30 млн. км3. Працяг ледавіковых покрываў — плывучыя шэльфавыя льды ў Антарктыдзе. Ад іх адколваюцца плывучыя глыбы (айсбергі). Агульная пл. сучасных ледавіковых покрываў 14,4 млн. км2, з іх 85,3% складаюць наземныя покрывы Антарктыды, 12,1% — Грэнландыі, 2,1% — астатнія. Падземнае З. (шматгадовая мерзлата) — тоўшча горных парод з адмоўнай т-рай, якая захоўваецца працяглы (да тысячагоддзяў) час. У выніку дзейнасці ледавікоў і водных патокаў, што ўзнікаюць пры раставанні льдоў, на сушы ўтвараецца характэрны комплекс ледавіковых адкладаў. Утварэнні, перанесеныя айсбергамі і адкладзеныя ў моры, з’яўляюцца ледавікова-марскімі (марынагляцыяльнымі). Па паходжанні ў ледавіковым рэльефе адрозніваюць формы: экзарацыйныя («барановыя лбы», лагчыны ледавіковага выворвання і інш. — на раўнінах; трогі, кары, рыгелі — у гарах), ледавікова-акумулятыўныя (марэнныя раўніны, узгоркі і грады) і водна-ледавіковыя (зандравыя раўніны, тэрасы і інш.).

2) Значнае пашырэнне масы і плошчы ледавікоў, якое звязана са зменай клімату і паўтаралася ў гісторыі Зямлі неаднаразова. Вылучаюцца ледавіковыя перыяды, эпохі, стадыялы.

З. выяўлены ў раннім пратэразоі (Паўн. Амерыка), познім рыфеі (Афрыка і Аўстралія), вендзе (Еўропа, Азія і Паўн. Амерыка), ардовіку (Афрыка), у канцы карбону — пачатку пярмі на гіпатэтычным мацерыку Гандвана ў Паўд. паўшар’і (сляды знойдзены ў Паўд. Амерыцы, Афрыцы, Аўстраліі, Індастане). У плейстацэне (ранні антрапаген) вялізныя ледавіковыя покрывы пашыраліся на значнай частцы Еўропы, Паўн. Азіі, Паўн. Амерыкі. Ад іх захаваліся адклады і ледавіковыя формы рэльефу, якія сведчаць пра шматлікасць зледзяненняў чацвярцічнага ледавіковага перыяду. У кожнай краіне вылучаецца неаднолькавая колькасць З. пад рознымі назвамі.

На Беларусі пашыраны адклады вендскага З. (тыліты вільчанскай серыі) і 5 антрапагенавых З. Гл. Антрапагенавая сістэма (перыяд). Гіпотэзы З.: ваганні сонечнай актыўнасці, змена нахілу зямной восі да плоскасці экліптыкі, змена размяшчэння сушы і мора, гораўтваральныя працэсы і інш.

У.І.Шкуратаў.

т. 7, с. 75

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВА́РТАСЦЬ,

увасобленая ў тавары і арэчаўленая ў ім праца таваравытворцаў; грамадская ўласцівасць тавару, якая выяўляецца ва ўмовах таварнай вытв-сці пры абмене аднаго тавару на іншы; аснова цаны тавару. Адрозніваюць спажывецкую і менавую вартасць. Спажывецкая вартасць — каштоўнасць рэчы, яе здольнасць задавальняць чалавечыя патрэбы непасрэдна (хлеб, адзенне, жыллё) і ўскосна (машыны, станкі, сыравіна). Усе тавары — розныя як спажывецкія вартасці (па якасці), але аднолькавыя як вартасць, бо ствараюцца ў вытв-сці і з’яўляюцца прадуктам працы. Велічыня вартасці тавару залежыць ад колькасці рабочага часу, неабходнага для вырабу гэтага тавару. Розныя таваравытворцы затрачваюць на вытв-сць аднаго і таго ж тавару неаднолькавую колькасць працы (часу), таму тавары маюць розную індывід. вартасць. Але яна не можа вызначаць грамадскую (рыначную) вартасць. Таваравытворцы звязаны паміж сабой сістэмай грамадскага падзелу працы і таму вырабляюць тавары на продаж (адзін для аднаго), у выніку чаго іх праца набывае грамадскі характар. Таму грамадская (рыначная) вартасць вызначаецца грамадска неабходным рабочым часам, ці часам, які затрачваецца на вытв-сць асн. масы тавараў гэтага віду. Формай выяўлення вартасці на рынку з’яўляецца менавая вартасць — прапорцыя, у якой адны тавары абменьваюцца на іншыя. Яна вызначаецца законам, які патрабуе абмену таварамі паводле іх грамадскай (рыначнай), а не індывідуальнай вартасці. Гэты закон выступае гал. рэгулятарам таварнай вытв-сці, эканам. адносін паміж таваравытворцамі. Ён вымушае прадпрымальнікаў змяншаць індывідуальны рабочы час да ўзроўню грамадска неабходнага, а яшчэ лепш — ніжэй за яго, што гарантуе перамогу ў канкурэнтнай барацьбе і прыбытковасць вытв.-гасп. дзейнасці. Тым самым ён стымулюе навук.-тэхн. прагрэс, удасканаленне вытв-сці, павышэнне прадукцыйнасці працы. Пачатак тэорыі працоўнай вартасці паклалі У.Пеці, А.Сміт, Д.Рыкарда, навук. абгрунтаваў яе К.Маркс. Некаторыя вучоныя-эканамісты лічаць, што менавыя прапорцыі вартасці тавараў вызначаюцца не затрачанай на іх выраб грамадскай працай, а іх спажывецкай вартасцю (каштоўнасцю); на гэтай канцэпцыі заснавана гранічнай карыснасці тэорыя. Існуе таксама прадукцыйнасці тэорыя, паводле якой вартасць — вынік дзеяння 3 фактараў вытв-сці — працы, зямлі і капіталу.

У гіст. развіцці вартасць прайшла наступныя формы ў працэсе абмену: простую, адзінкавую, ці выпадковую (тавары — на тавар), поўную, ці разгорнутую (адзін тавар — на многія тавары), усеагульную (усе тавары — на тавар-эквівалент) і грашовую (усе тавары — на грошы). Грашовая форма вартасці дала прастор развіццю таварнай вытв-сці, ініцыятывы прадпрымальнікаў, гандл. сувязяў. У гэтых умовах грошы сталі асновай узнікнення капіталу.

С.Я.Янчанка.

т. 4, с. 13

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛАЎНЫ́ МОЗГ,

пярэдні аддзел цэнтральнай нервовай сістэмы пазваночных жывёл і чалавека, размешчаны ў поласці чэрапа; матэрыяльная аснова вышэйшай нервовай дзейнасці, галоўны рэгулятар усіх жыццёвых функцый арганізма і яго ўзаемаадносін з навакольным асяроддзем.

Філагенетычна галаўны мозг фарміраваўся па шляху ўскладнення будовы і функцый пярэдняга канца нервовай трубкі ў цеснай сувязі з развіццём органаў пачуццяў (гл. ў арт. Цэфалізацыя). У беспазваночных яго ролю выконвае галаўны ганглій, асабліва развіты ў вышэйшых насякомых і малюскаў. Прымітыўны галаўны мозг вылучаецца ў папярэдніка пазваночных — ланцэтніка. У пазваночных жывёл ён ускладняўся з дыферэнцыяцыяй на аддзелы. Сапраўдны галаўны мозг упершыню выявіўся ў кругларотых з падзелам яго на слабадыферэнцыраваны пярэдні мозг (забяспечвае функцыю нюху), сярэдні мозг (уключае вышэйшыя зрокавыя цэнтры), задні мозг (з пачатковай дыферэнцыяцыяй на прадаўгаваты мозг і мазжачок). У рыб інтэнсіўна развіваецца і мазжачок. Выхад пазваночных на сушу абумовіў пераразмеркаванне ролі асобных аддзелаў галаўнога мозга: у земнаводных і рэптылій аб’ёмная доля задняга мозга невялікая, у павялічаным сярэднім мозгу з’яўляюцца адпаведна двух- і чатырохбугор’е; у рэптылій пярэдні мозг дыферэнцыруецца на прамежкавы мозг і 2 паўшар’і канцавога мозга. У птушак развіваюцца глыбокія аддзелы пярэдняга мозга і мазжачок; у млекакормячых — кара вялікіх паўшар’яў (пярэдні і задні мозг дыферэнцыруецца). Антагенетычна галаўны мозг — вытворнае мазгавых пузыроў, поласці якіх развіваюцца ў жалудачкі мозга;эвалюцыйнае ўскладненне будовы галаўнога мозга прасочваецца ў працэсе эмбрыянальнага развіцця жывёл.

У чалавека галаўны мозг дасягнуў найвышэйшай ступені развіцця за кошт павелічэння масы, ускладнення будовы і функцый вял. паўшар’яў, марфал. і функцыян. злучаных пучком нерв. валокнаў — мазолістым целам. Ніжнія аддзелы галаўнога мозга ўтвараюць ствол мозга, які пераходзіць у спінны мозг. Вялікія паўшар’і, падзеленыя глыбокай шчылінай на правае і левае, утвараюць вялікі, або канцавы мозг — аддзел галаўнога мозга, большы за ўсе астатнія. Паверхня яго ў чалавека і буйных жывёл мае звіліны і барозны (у чалавека самыя глыбокія падзяляюць паўшар’і на долі — лобную, цемянную, скроневую, патылічную), у дробных — гладкая. Верхні слой вял. мозга складаецца з шэрага рэчыва (у чалавека таўшчыня слоя 1—5 мм, пераважна нерв. клеткі), ніжэй знаходзіцца белае рэчыва (пераважна нерв. валокны), у тоўшчы якога вылучаюцца падкоркавыя вузлы, або базальныя гангліі (важнейшыя — паласатае цела, бледны шар), утвораныя шэрым рэчывам. У склад усіх структур галаўнога мозга ўваходзіць нейраглія. Да функцыянальна важных утварэнняў галаўнога мозга належаць таламус, гіпаталамус, эпіталамус, лімбічная сістэма і інш. Зверху галаўны мозг пакрыты цвёрдай павуціннай і мяккай мазгавымі абалонкамі, прастора паміж якімі запоўнена цэрэбраспінальнай вадкасцю. Кровазабеспячэнне галаўнога мозга адбываецца праз пазваночныя і ўнутр. сонныя артэрыі. Адзін з асн. прынцыпаў работы галаўнога мозга — безумоўныя і ўмоўныя рэфлексы, якія рэалізуюцца з удзелам экстрапіраміднай сістэмы і піраміднай сістэмы (ёсць толькі ў млекакормячых, найб. развітая ў малпаў і чалавека). Паміж часткамі галаўнога мозга назіраецца двух- і шматбаковая сувязь. Аналіз і сінтэз, перапрацоўка, захоўванне і выдача атрыманай ад рэцэптараў інфармацыі ажыццяўляюцца ў канцавым мозгу (кара вял. паўшар’яў, падкоркавыя структуры). Ацэнка інфармацыі магчыма дзякуючы працэсам памяці. Праз зыходныя ўплывы галаўны мозг кантралюе ўзбуджальнасць рэфлекторных аддзелаў спіннога мозга (гл. Вегетатыўная нервовая сістэма). У кары галаўнога мозга знаходзяцца цэнтры кіравання складанымі рухальнымі актамі, у прадаўгаватым — дыхання, сардэчнай дзейнасці, сасударасшыральны, глытання, жавання, сакрэцыі стрававальных залоз, потавыдзялення, рэгуляцыі мышачнага тонусу, кашлю і інш. Нерв. цэнтры шэрага рэчыва экраннага тыпу працуюць па прынцыпе дывергенцыі, нерв. цэнтры стваловай часткі ядзернага тыпу — па прынцыпе канвергенцыі. Гіпаталамус — вышэйшы цэнтр рэгуляцыі вегетатыўных функцый, месца ўзаемадзеяння нерв. і эндакрыннай сістэм, эпіталамус — цыркадных рытмаў. Нармальная работа галаўнога мозга магчыма пры пэўным узроўні ўзбуджальнасці яго асн. аддзелаў, які падтрымліваецца праз рэтыкулярную фармацыю, сімпатычную нервовую сістэму, мазжачок і спецыфічныя шляхі, што ідуць ад органаў пачуццяў, праз механізмы самарэгуляцыі тонусу кары вял. паўшар’яў. Здольнасць галаўнога мозга перапрацоўваць інфармацыю і ўвасабляць яе ў пэўныя рэакцыі арганізма забяспечвае ўсе віды вышэйшай нерв. дзейнасці, у т. л. мысленне, свядомасць. Функцыі галаўнога мозга могуць парушацца пры шкодных уздзеяннях (мех., фіз., хім., радыяцыйных) на яго ў цэлым або на пэўны ўчастак. Значную ролю ва ўзнікненні паталогіі галаўнога мозга маюць заганы развіцця ці пашкоджанні нерв. сістэмы ў перыяд эмбрыягенезу, расстройствы мазгавога кровазвароту (пры інсультах, атэрасклерозе, гіпертанічнай хваробе, анеўрызмах), запаленчыя працэсы (пры абсцэсах, арахнаідыце, менінгіце, менінгаэнцэфаліце, энцэфаліце), інфекц. і паразітарныя фактары (пры цыстыцэркозе, сіфілісе, эхінакакозе і інш.), чэрапна-мазгавыя траўмы, функцыян. расстройствы, парушэнні працэсаў самарэгуляцыі галаўнога мозга (неўрозы, псіхічныя хваробы і расстройствы) і інш.

Па агульнай сярэдняй масе галаўны мозг дарослага чалавека (прыкладна 1500 г пры аб’ёме каля 1500 см³ і плошчы паверхні 1600—2000 см²) саступае толькі галаўному мозгу слана (каля 5700 т) і кіта (6000—7000 г). Адносная яго сярэдняя маса ў дачыненні да агульнай масы цела, т.зв. паказчык Рагінскага, у галаўнога мозга чалавека найвышэйшая — 32; у дэльфінаў — 16, у сланоў — 10,4, у малпаў — 2—4. Прамой залежнасці паміж памерамі галаўнога мозга і яго здольнасцямі да ажыццяўлення вышэйшай нерв. дзейнасці не ўстаноўлена.

Літ.:

Мозг: Пер. з англ. М., 1984.

Я.В.Малашэвіч.

т. 4, с. 453

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯСФЕ́РА

(ад бія... + сфера),

абалонка Зямлі, састаў, структура і энергетыка якой абумоўлены сукупнай дзейнасцю і ўплывамі жывых арганізмаў. Першыя ўяўленні пра біясферу сфармуляваў франц. вучоны Ж.Б.Ламарк (1802). Тэрмін «біясфера» ўвёў аўстр. геолаг Э.Зюс (1875). Стварэнне цэласнага вучэння пра біясферу належыць рус. вучонаму У.І.Вярнадскаму (1926). Біясфера ўключае арганізмы (каля 3 млн. відаў), іх рэшткі, прыземную ч. атмасферы да вышыні азонавага экрана (20—30 км), усю гідрасферу і верхнюю частку літасферы; усе яны ўзаемазвязаны працэсамі міграцыі рэчыва і энергіі. Ніжняя мяжа біясферы на сушы на глыб. да 3—4 км ад паверхні зямной кары, у Сусветным ак. на 1—2 км ніжэй за дно. У біясферы (паводле Вярнадскага) адрозніваюць 7 розных, але ўзаемазвязаных тыпаў рэчываў: жывое рэчыва (расліннае, жывёльнае і мікраарганізмы), біягеннае рэчыва (прадукты жыццядзейнасці жывых арганізмаў — гаручыя выкапнёвыя, вапнякі і інш.), косныя рэчывы (горныя пароды магматычнага, неарган. паходжання, вада і інш.), біякосныя рэчывы (прадукты распаду і перапрацоўкі горных і асадкавых парод жывымі арганізмамі), радыеактыўнае рэчыва, рассеяныя атамы і рэчыва касм. паходжання (метэарыты, касм. пыл). Асн. функцыя біясферы — выкарыстанне сонечнай энергіі (фотасінтэз) і біялагічны кругаварот рэчываў і энергіі, які забяспечвае развіццё ўсіх жыццёвых працэсаў. Жывыя арганізмы (жывое рэчыва) і іх жыццёвае асяроддзе арганічна звязаны паміж сабой і ўтвараюць сістэмы глабальнага, рэгіянальнага і лакальнага ўзроўняў. У рэгіянальных і лакальных сістэмах вылучаюць структурныя адзінкі біясферы: біёмы, біягеацэнозы (экасістэмы), прыродныя зоны на раўнінах і вышынныя (вертыкальныя) прыродныя паясы ў гарах. Біясфера мазаічная паводле структуры і саставу адлюстроўвае геахім. і геафіз. неаднароднасць аблічча Зямлі (мацерыкі і акіяны, прыродныя зоны і паясы, раўніны і горы і інш.) і нераўнамернасць у размеркаванні жывога рэчыва. Больш за 90% усяго жывога рэчыва біясферы прыпадае на наземную расліннасць. Агульная маса жывога рэчыва ў Б. ацэньваецца ў 1,8—2,5·10​12 т (у пераліку на сухое рэчыва) і складае нязначную ч. масы біясферы (3·10​18 т). На стан біясферы моцна ўплывае гасп. дзейнасць чалавека. Антрапагеннае ўздзеянне стымулюе пераход біясферы ў якасна новы стан — наасферу. Ахова біясферы прадугледжвае сістэму мерапрыемстваў: вядзенне біясфернага маніторынгу, арганізацыю біясферных запаведнікаў і інш., накіраваных на захаванне арганізмаў і біягеацэнозаў. Праводзіцца комплексная міжнар. праграма «Чалавек і біясфера». Гл. таксама Ахова прыроды, Забруджванне навакольнага асяроддзя.

Літ.:

Вернадский В.И. Химическое строение биосферы Земли и ее окружения. 2 изд. М., 1987;

Никитин Д.П., Новиков Ю.В. Окружающая среда и человек 2 изд. М., 1986;

Сытник К.М., Брайон А.В., Гордецкий А.В. Биосфера, экология, охрана природы: Справ. пособие. Киев, 1987.

Г.А.Семянюк.

т. 3, с. 178

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)